Article

AutDB: a gene reference resource for autism research.

MindSpec Inc., 9656 Blake Lane, Fairfax, VA 22031, USA.
Nucleic Acids Research (Impact Factor: 8.81). 12/2008; 37(Database issue):D832-6. DOI: 10.1093/nar/gkn835
Source: PubMed

ABSTRACT Recent advances in studies of Autism Spectrum Disorders (ASD) has uncovered many new candidate genes and continues to do so at an accelerated pace. To address the genetic complexity of ASD, we have developed AutDB (http://www.mindspec.org/autdb.html), a publicly available web-portal for on-going collection, manual annotation and visualization of genes linked to the disorder. We present a disease-driven database model in AutDB where all genes connected to ASD are collected and classified according to their genetic variation: candidates identified from genetic association studies, rare single gene mutations and genes linked to syndromic autism. Gene entries are richly annotated for their relevance to autism, along with an in-depth view of their molecular functions. The content of AutDB originates entirely from the published scientific literature and is organized to optimize its use by the research community. The main focus of this resource is to provide an up-to-date, annotated list of ASD candidate genes in the form of reference dataset for interrogating molecular mechanisms underlying the disorder. Our model for consolidated knowledge representation in genetically complex disorders could be replicated to study other such disorders.

0 Bookmarks
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. © 2015 Spiers et al.; Published by Cold Spring Harbor Laboratory Press.
    Genome Research 02/2015; DOI:10.1101/gr.180273.114 · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.
    PLoS ONE 02/2015; 10(2):e0116358. DOI:10.1371/journal.pone.0116358 · 3.53 Impact Factor
  • 09/2014; 2(3):124-134. DOI:10.1007/s40142-014-0047-5

Full-text (3 Sources)

Download
44 Downloads
Available from
May 27, 2014