MicroRNA Processing Pathway Regulates Olfactory Neuron Morphogenesis

Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA.
Current Biology (Impact Factor: 9.92). 12/2008; 18(22):1754-9. DOI: 10.1016/j.cub.2008.09.045
Source: PubMed

ABSTRACT The microRNA (miRNA) processing pathway produces miRNAs as posttranscriptional regulators of gene expression. The nuclear RNase III Drosha catalyzes the first processing step together with the dsRNA binding protein DGCR8/Pasha generating pre-miRNAs [1, 2]. The next cleavage employs the cytoplasmic RNase III Dicer producing miRNA duplexes [3, 4]. Finally, Argonautes are recruited with miRNAs into an RNA-induced silencing complex for mRNA recognition (Figure 1A). Here, we identify two members of the miRNA pathway, Pasha and Dicer-1, in a forward genetic screen for mutations that disrupt wiring specificity of Drosophila olfactory projection neurons (PNs). The olfactory system is built as discrete map of highly stereotyped neuronal connections [5, 6]. Each PN targets dendrites to a specific glomerulus in the antennal lobe and projects axons stereotypically into higher brain centers [7-9]. In selected PN classes, pasha and Dicer-1 mutants cause specific PN dendrite mistargeting in the antennal lobe and altered axonal terminations in higher brain centers. Furthermore, Pasha and Dicer-1 act cell autonomously in postmitotic neurons to regulate dendrite and axon targeting during development. However, Argonaute-1 and Argonaute-2 are dispensable for PN morphogenesis. Our findings suggest a role for the miRNA processing pathway in establishing wiring specificity in the nervous system.

Download full-text


Available from: Audrey P Fan, Jun 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise connections established between pre- and postsynaptic partners during development are essential for the proper function of the nervous system. The olfactory system detects a wide variety of odorants and processes the information in a precisely connected neural circuit. A common feature of the olfactory systems from insects to mammals is that the olfactory receptor neurons (ORNs) expressing the same odorant receptor make one-to-one connections with a single class of second-order olfactory projection neurons (PNs). This represents one of the most striking examples of targeting specificity in developmental neurobiology. Recent studies have uncovered central roles of transmembrane and secreted proteins in organizing this one-to-one connection specificity in the olfactory system. Here, we review recent advances in the understanding of how this wiring specificity is genetically controlled and focus on the mechanisms by which transmembrane and secreted proteins regulate different stages of the Drosophila olfactory circuit assembly in a coordinated manner. We also discuss how combinatorial coding, redundancy, and error-correcting ability could contribute to constructing a complex neural circuit in general.
    Genetics 01/2014; 196(1):17-29. DOI:10.1534/genetics.113.154336 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nervous system equips us with capability to adapt to many conditions and circumstances. We rely on an armamentarium of intricately formed neural circuits for many of our adaptive strategies. However, this capability also depends on a well-conserved toolkit of different molecular mechanisms that offer not only compensatory responses to a changing world, but also provide plasticity to achieve changes in cellular state that underlie a broad range of processes from early developmental transitions to life-long memory. Among the molecular tools that mediate changes in cellular state, our understanding of posttranscriptional regulation of gene expression is expanding rapidly. Part of the "epigenetic landscape" that shapes the deployment and robust regulation of gene networks during the construction and the remodeling of the brain is the microRNA system controlling both levels and translation of messenger RNA. Here we consider recent advances in the study of microRNA-mediated regulation of synaptic form and function.
    Neuron 08/2012; 75(3):363-79. DOI:10.1016/j.neuron.2012.07.005 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Argonaute 1 (Ago1) is a member of the Argonaute/PIWI protein family involved in small RNA-mediated gene regulation. In Drosophila, Ago1 plays a specific role in microRNA (miRNA) biogenesis and function. Previous studies have demonstrated that Ago1 regulates the fate of germline stem cells. However, the function of Ago1 in other aspects of oogenesis is still elusive. Here we report the function of Ago1 in developing egg chambers. We find that Ago1 protein is enriched in the oocytes and is also highly expressed in the cytoplasm of follicle cells. Clonal analysis of multiple ago1 mutant alleles shows that many mutant egg chambers contain only 8 nurse cells without an oocyte which is phenocopied in dicer-1, pasha and drosha mutants. Our results suggest that Ago1 and its miRNA biogenesis partners play a role in oocyte determination and germline cell division in Drosophila.
    Developmental Biology 03/2012; 365(2):384-94. DOI:10.1016/j.ydbio.2012.03.005 · 3.64 Impact Factor