Article

Common Variants in Immune and DNA Repair Genes and Risk for Human Papillomavirus Persistence and Progression to Cervical Cancer

Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd., Rm. 5104, Rockville, MD 20852-7234, USA.
The Journal of Infectious Diseases (Impact Factor: 5.78). 12/2008; 199(1):20-30. DOI: 10.1086/595563
Source: PubMed

ABSTRACT We examined host genetic factors to identify those more common in individuals whose human papillomavirus (HPV) infections were most likely to persist and progress to cervical intraepithelial neoplasia grade 3 (CIN3) and cancer.
We genotyped 92 single-nucleotide polymorphisms (SNPs) from 49 candidate immune response and DNA repair genes obtained from 469 women with CIN3 or cancer, 390 women with persistent HPV infections (median duration, 25 months), and 452 random control subjects from the 10,049-woman Guanacaste Costa Rica Natural History Study. We calculated odds ratios and 95% confidence intervals (CIs) for the association of SNP and haplotypes in women with CIN3 or cancer and HPV persistence, compared with random control subjects.
A SNP in the Fanconi anemia complementation group A gene (FANCA) (G501S) was associated with increased risk of CIN3 or cancer. The AG and GG genotypes had a 1.3-fold (95% CI, 0.95-1.8-fold) and 1.7-fold (95% CI, 1.1-2.6-fold) increased risk for CIN3 or cancer, respectively (P(trend) = .008; referent, AA). The FANCA haplotype that included G501S also conferred increased risk of CIN3 or cancer, as did a different haplotype that included 2 other FANCA SNPs (G809A and T266A). A SNP in the innate immune gene IRF3 (S427T) was associated with increased risk for HPV persistence (P(trend) = .009).
Our results require replication but support the role of FANCA variants in cervical cancer susceptibility and of IRF3 in HPV persistence.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The newly gained knowledge of the viral etiology in cervical carcinogenesis has prompted industrial interests in developing virology-based tools for cervical cancer prevention. Due to the long incubation period from viral infection to developing an invasive cancer, a process whose outcome is influenced by numerous life-style and genetic factors, the true efficacy of the genotype-specific human papillomavirus (HPV) vaccines in cervical cancer prevention cannot be determined for another 30 years. Most HPV DNA test kits designed to replace the traditional Papanicolaou (Pap) smears for precancer detection lack the analytical sensitivity and specificity to comprehensively detect all potentially carcinogenic HPVs and to perform reliable genotyping. The authors implemented the classic nested PCR and Sanger DNA-sequencing technology for routine HPV testing. The results showed a true negative HPV PCR invariably indicates the absence of precancerous cells in the cytology samples. However, 80.5% of single positive HPV-16 tests and 97.3% of single positive HPV-18 tests were associated with a negative or a largely self-reversible Pap cytology. Routine sensitive and reliable HPV type-specific or perhaps even variant-specific methods are needed to address the issues of persistence of HPV infection if a virology-based primary cervical screen is used to replace the Pap cytology screening paradigm.
    12/2014; 6(4):2072-99. DOI:10.3390/cancers6042072
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thirty years ago, human papillomavirus types 16 and 18 were isolated from cervical carcinomas, and it has been almost 10 years since the introduction of the first prophylactic virus-like particle (VLP) vaccine. The VLP vaccines have already impacted the reduction of pre-malignant lesions and genital warts, and it is expected that vaccination efforts will successfully lower the incidence of cervical cancer before the end of the decade. Here we summarize the historical developments leading to the prophylactic HPV vaccines and discuss current advances of next-generation vaccines that aim to overcome certain limitations of the VLP vaccines, including their intrinsic narrow range of protection, stability and production/distribution costs.
    Future Virology 07/2014; 9(7):633-653. DOI:10.2217/fvl.14.44 · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer has a heritable genetic component. A large number of genetic associations with cervical cancer have been reported in hypothesis-driven candidate gene studies, but many of these results are either inconsistent or have failed to be independently replicated. Genome-wide association studies (GWAS) have identified additional susceptibility loci previously not implicated in cervical cancer development, highlighting the power of genome-wide unbiased association analyses. Post-GWAS analyses including pathway-based analysis and functional characterization of associated variants have provided new insights into the pathogenesis of cervical cancer. In this review we summarize findings from candidate gene association studies, GWAS, and post-GWAS analyses of cervical cancer. We also discuss gaps in our understanding, possible clinical implications of the findings, and lessons for studies of other complex diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Trends in Genetics 11/2014; 31(1). DOI:10.1016/j.tig.2014.10.005 · 11.60 Impact Factor

Full-text (2 Sources)

Download
50 Downloads
Available from
May 31, 2014