Chronic insulin treatment suppresses PTP1B function, induces increased PDGF signaling, and amplifies neointima formation in the balloon-injured rat artery

Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 11/2008; 296(1):H132-9. DOI: 10.1152/ajpheart.00370.2008
Source: PubMed

ABSTRACT We tested the hypothesis that hyperinsulinemia induces the suppression of protein tyrosine phosphatase 1B (PTP1B) function, leading to enhanced PDGF receptor (PDGFR) signaling and neointimal hyperplasia. Rats were implanted with insulin-releasing pellets or sham pellets. Blood glucose levels, insulin levels, food and water intake, body weights, and blood pressures were measured. Neointimal hyperplasia was assessed by computerized morphometry 14 days after carotid balloon injury. PTP1B protein expression in injured arteries was determined via Western blot analysis, whereas PTP1B activity was determined via an immunophosphatase assay. Serum insulin levels were two- to threefold greater in hyperinsulinemic rats, whereas systolic blood pressures, food and water intake, serum triglyceride levels, plasma cortisol levels, and urinary catecholamine levels were not affected. Fourteen days after injury, neointima-to-media area ratios were 0.89 +/- 0.23 and 1.35 +/- 0.22 in control and hyperinsulinemic rats, respectively (P < 0.01). PTP1B protein levels and total PTP1B activity in injured carotid arteries from the insulin-treated group were significantly decreased 7 or 14 days after injury, whereas PTP1B specific activity was decreased only 14 days after injury. These findings were associated with decreased PTP1B mRNA levels and increased PDGFR tyrosyl phosphorylation in insulin-treated rats. These observations support the hypothesis that hyperinsulinemia induces the suppression of PTP1B function, leading to enhanced PDGFR signaling and neointimal hyperplasia.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Anti-mitogenic agents currently used to prevent restenosis in drug-eluting stents delay re-endothelialization. Delayed re-endothelialization is now considered as the main cause of late stent thrombosis with drug-eluting stents, which emphasizes the need for new treatments. We have shown that systemic insulin treatment decreases neointimal growth and accelerates re-endothelialization after arterial injury in a rat model of restenosis. However, systemic insulin treatment cannot be given to non-diabetic individuals because of the risk of hypoglycemia. Thus, we investigated whether local insulin treatment is also effective in reducing neointimal growth after arterial injury. Rats were given local vehicle or local insulin delivered via Pluronic gel applied around the carotid artery immediately following balloon injury. Plasma glucose and systemic insulin levels were not affected by local insulin treatment. Insulin decreased intimal area at 28 days (P < 0.05) and also inhibited vascular smooth muscle cell migration by 60% at 4 days (P < 0.05). NPH (a longer-lasting insulin) also decreased neointimal area. These results indicate that local insulin treatment can lead to decreased restenosis, suggesting a protective vascular effect of insulin in vivo and that local insulin treatment, possibly via insulin-eluting stents, may be clinically relevant.
    Canadian Journal of Physiology and Pharmacology 12/2013; 91(12):1086-94. DOI:10.1139/cjpp-2013-0038 · 1.55 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin treatment is associated with increased adipose mass in both humans and mice. However, the underlying dynamic basis of insulin induced lipid accumulation in adipose tissue remains elusive. To assess this, young female C57BL6/J mice were fed a low fat diet for 3 weeks, treated subsequently with 7 days of constant subcutaneous insulin infusion by osmotic minipumps and compared to mice with only buffer infused. To track changes in lipid deposition during insulin treatment, metabolic labeling was conducted with heavy water for the final 4 days. Blood glucose was significantly lowered within one hour after implantation of insulin loaded mini pumps and remained lower throughout the study. Insulin treated animals gained significantly more weight during treatment and the mean weight of the subcutaneous adipose depots was significantly higher with the highest dose of insulin. Surprisingly, de novo palmitate synthesis within the subcutaneous and the gonadal depots was not affected significantly by insulin treatment. In contrast insulin treatment caused accumulation of triglycerides in both depots due to either deposition of newly synthesised triglycerides (subcutaneous depot) or inhibition of lipolysis (gonadal depot).
    PLoS ONE 09/2013; 8(9):e76060. DOI:10.1371/journal.pone.0076060 · 3.53 Impact Factor