Pathological description of a non-motor variant of multiple system atrophy

Neurology Service, Hospital Clinic de Barcelona, C/Villarroel 170, Barcelona 08036, Spain.
Journal of neurology, neurosurgery, and psychiatry (Impact Factor: 5.58). 01/2009; 79(12):1399-400. DOI: 10.1136/jnnp.2008.145276
Source: PubMed

ABSTRACT Multiple system atrophy (MSA) is a neurodegenerative disorder that usually presents clinically as a combination of parkinsonism, cerebellar syndrome and autonomic failure. Patients with MSA can present other clinical features, such as inspiratory stridor and rapid eye movement (REM) sleep behaviour disorder (RBD). We report a patient with pathologically confirmed MSA who presented with a longstanding history of stridor, RBD and autonomic disturbances but did not develop overt parkinsonism or cerebellar signs. This case illustrates that MSA may present clinically without its cardinal motor symptoms, and that stridor and RBD may be clues to recognise the disease in a patient with autonomic failure.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin,a natural polyphenol obtained from turmeric,has been implicated to be neuroprotective in a variety of neurodegenerative disorders although the mechanism remains poorly understood. The results of our recent experiments indicated that curcumin could protect dopaminergic neurons from apoptosis in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). The death of dopaminergic neurons and the loss of dopaminergic axon in the striatum were significantly suppressed by curcumin in MPTP mouse model. Further studies showed that curcumin inhibited JNKs hyperphosphorylation induced by MPTP treatment. JNKs phosphorylation can cause translocation of Bax to mitochondria and the release of cytochrome c which both ultimately contribute to mitochondria-mediated apoptosis. These pro-apoptosis effect can be diminished by curcumin. Our experiments demonstrated that curcumin can prevent nigrostriatal degeneration by inhibiting the dysfunction of mitochondrial through suppressing hyperphosphorylation of JNKs induced by MPTP. Our results suggested that JNKs/mitochondria pathway may be a novel target in the treatment of PD patients.
    08/2012; 1(1):16. DOI:10.1186/2047-9158-1-16
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple system atrophy (MSA) is a rare neurodegenerative disease of undetermined cause manifesting with progressive autonomic failure (AF), cerebellar ataxia and parkinsonism due to neuronal loss in multiple brain areas associated with (oligodendro)glial cytoplasmic alpha-synuclein (alpha SYN) inclusions (GCIs). Using proteolipid protein (PLP)-alpha-synuclein (alpha SYN) transgenic mice we have previously reported parkinsonian motor deficits triggered by MSA-like alpha SYN inclusions. We now extend these observations by demonstrating degeneration of brain areas that are closely linked to progressive AF and other non-motor symptoms in MSA, in (PLP)-alpha SYN transgenic mice as compared to age-matched non-transgenic controls. We show delayed loss of cholinergic neurons in nucleus ambiguus at 12 months of age as well as early neuronal loss in laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus and Onuf's nucleus at 2 months of age associated with alpha SYN oligodendroglial overexpression. We also report that neuronal loss triggered by MSA-like alpha SYN inclusions is absent up to 12 months of age in the thoracic intermediolateral cell column suggesting a differential dynamic modulation of alpha SYN toxicity within the murine autonomic nervous system. Although the spatial and temporal evolution of central autonomic pathology in MSA is unknown our findings corroborate the utility of the (PLP)-alpha SYN transgenic mouse model as a testbed for the study of oligodendroglial alpha SYN mediated neurodegeneration replicating both motor and non-motor aspects of MSA.
    Experimental Neurology 08/2010; 224(2):459-64. DOI:10.1016/j.expneurol.2010.05.008 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because the progression of multiple system atrophy (MSA) is usually rapid and there still is no effective cause-related therapy, early and accurate diagnosis is important for the proper management of patients as well as the development of neuroprotective agents. However, despite the progression in the field of MSA research in the past few years, the diagnosis of MSA in clinical practice still relies largely on clinical features and there are limitations in terms of sensitivity and specificity, especially in the early course of the disease. Furthermore, recent pathological, clinical, and neuroimaging studies have shown that (1) MSA can present with a wider range of clinical and pathological features than previously thought, including features considered atypical for MSA; thus, MSA can be misdiagnosed as other diseases, and conversely, disorders with other etiologies and pathologies can be clinically misdiagnosed as MSA; and (2) several investigations may help to improve the diagnosis of MSA in clinical practice. These aspects should be taken into consideration when revising the current diagnostic criteria. This is especially true given that disease-modifying treatments for MSA are under investigation.
    Journal of Neurology 02/2015; DOI:10.1007/s00415-015-7654-2 · 3.84 Impact Factor