Article

Hermansky-Pudlak Syndrome Protein Complexes Associate with Phosphatidylinositol 4-Kinase Type II alpha in Neuronal and Non-neuronal Cells

Department of Cell Biology and Medicine, Emory University, Atlanta, Georgia 30322, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 12/2008; 284(3):1790-802. DOI: 10.1074/jbc.M805991200
Source: PubMed

ABSTRACT The Hermansky-Pudlak syndrome is a disorder affecting endosome sorting. Disease is triggered by defects in any of 15 mouse gene products, which are part of five distinct cytosolic molecular complexes: AP-3, homotypic fusion and vacuole protein sorting, and BLOC-1, -2, and -3. To identify molecular associations of these complexes, we used in vivo cross-linking followed by purification of cross-linked AP-3 complexes and mass spectrometric identification of associated proteins. AP-3 was co-isolated with BLOC-1, BLOC-2, and homotypic fusion and vacuole protein sorting complex subunits; clathrin; and phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha). We previously reported that this membrane-anchored enzyme is a regulator of AP-3 recruitment to membranes and a cargo of AP-3 ( Craige, B., Salazar, G., and Faundez, V. (2008) Mol. Biol. Cell 19, 1415-1426 ). Using cells deficient in different Hermansky-Pudlak syndrome complexes, we identified that BLOC-1, but not BLOC-2 or BLOC-3, deficiencies affect PI4KIIalpha inclusion into AP-3 complexes. BLOC-1, PI4KIIalpha, and AP-3 belong to a tripartite complex, and down-regulation of either PI4KIIalpha, BLOC-1, or AP-3 complexes led to similar LAMP1 phenotypes. Our analysis indicates that BLOC-1 complex modulates the association of PI4KIIalpha with AP-3. These results suggest that AP-3 and BLOC-1 act, either in concert or sequentially, to specify sorting of PI4KIIalpha along the endocytic route.

Download full-text

Full-text

Available from: Jan Pohl, Jul 05, 2015
0 Followers
 · 
101 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigating interactions of proteins in the nuclear envelope (NE) using co-immunoprecipitation (Co-IP) has previously been difficult or even impossible due to their inherent resistance to extraction. We have developed a novel method, MCLIP (Membrane protein Cross-Link ImmunoPrecipitation), which takes advantage of a cell permeable crosslinker to enable effective detection and analysis of specific interactions of NE proteins in live cells using Western blot. Using MCLIP we show that, in U2OS cells, the integral inner nuclear membrane protein Samp1 interacts with Lamin B1, the LINC (Linker of nucleoskeleton and cytoskeleton) complex protein, Sun1 and the soluble small GTPase Ran. The results show that the previously detected in vitro interaction between Samp1 and Emerin also takes place in live cells. In vitro pull down experiments show, that the nucleoplasmic domains of Samp1 and Emerin can bind directly to each other. We also, show that MCLIP is suitable to coprecipitate protein interactions in different stages of the cell cycle.
    Biochimica et Biophysica Acta (BBA) - Biomembranes 06/2014; 1838(10). DOI:10.1016/j.bbamem.2014.06.008 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Biogenesis of Lysosome-Related Organelles Complex 1 (BLOC-1) is a protein complex containing the schizophrenia susceptibility factor dysbindin, which is encoded by the gene DTNBP1. However, mechanisms engaged by dysbindin defining schizophrenia susceptibility pathways have not been quantitatively elucidated. Here, we discovered prevalent and novel cellular roles of the BLOC-1 complex in neuronal cells by performing large-scale Stable Isotopic Labeling of Cells in Culture (SILAC) quantitative proteomics combined with genetic analyses in dysbindin-null mice (Mus musculus) and the genome of schizophrenia patients. We identified 24 proteins that associate with the BLOC-1 complex, many of which were altered in content/distribution in cells or tissues deficient in BLOC-1. New findings include BLOC-1 interactions with the COG complex, a Golgi apparatus tether, and antioxidant enzymes peroxiredoxins 1-2. Importantly, loci encoding eight of the 24 proteins are affected by genomic copy number variation in schizophrenia patients. Thus, our quantitative proteomic studies expand the functional repertoire of the BLOC-1 complex and provide insight into putative molecular pathways of schizophrenia susceptibility.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2012; 32(11):3697-711. DOI:10.1523/JNEUROSCI.5640-11.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysbindin (also known as dysbindin-1 or dystrobrevin-binding protein 1) was identified 10 years ago as a ubiquitously expressed protein of unknown function. In the following years, the protein and its encoding gene, DTNBP1, have become the focus of intensive research owing to genetic and histopathological evidence suggesting a potential role in the pathogenesis of schizophrenia. In this review, we discuss published results demonstrating that dysbindin function is required for normal physiology of the mammalian central nervous system. In tissues other than brain and in non-neuronal cell types, the protein has been characterized as a stable component of a multi-subunit complex, named BLOC-1 (biogenesis of lysosome-related organelles complex-1), which has been implicated in intracellular protein trafficking and the biogenesis of specialized organelles of the endosomal-lysosomal system. In the brain, however, dysbindin has been proposed to associate into multiple complexes with alternative binding partners, and to play a surprisingly wide variety of functions including transcriptional regulation, neurite and dendritic spine formation, synaptic vesicle biogenesis and exocytosis, and trafficking of glutamate and dopamine receptors. This puzzling array of molecular and functional properties ascribed to the dysbindin protein from brain underscores the need of further research aimed at ascertaining its biological significance in health and disease.
    ASN Neuro 04/2011; 3(2). DOI:10.1042/AN20110010 · 4.44 Impact Factor