Article

Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes.

Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy.
Journal of Cellular Biochemistry (Impact Factor: 3.06). 12/2008; 106(1):83-92. DOI: 10.1002/jcb.21981
Source: PubMed

ABSTRACT Previous studies reported that hyaluronic acid (HA), chondroitin sulphate (CS) and heparan sulphate (HS) were able to reduce the inflammatory process in a variety of cell types after lipopolysaccharide (LPS) stimulation. The aim of this study was to investigate the anti-inflammatory effect of glycosaminoglycans (GAGs) in mouse articular chondrocytes stimulated with LPS. Chondrocyte treatment with LPS (50 microg/ml) generated high levels of TNF-alpha, IL-1beta, IL-6, IFN-gamma, MMP-1, MMP-13, iNOS gene expression and their related proteins, increased NO concentrations (evaluated in terms of nitrites formation), NF-kappaB activation and IkBalpha degradation as well as apoptosis evaluated by the increase in caspase-3 expression and the amount of its related protein. The treatment of chondrocytes using two different doses (0.5 and 1.0 mg/ml) of HA, chondroitin-4-sulphate (C4S), chondroitin-6-sulphate (C6S), HS, keratan sulphate (KS) and dermatan sulphate (DS) produced a number of effects. HA exerted a very small anti-inflammatory and anti-apoptotic effect while it significantly reduced NO levels, although the effect on iNOS expression and activity was extremely slight. C4S and C6S reduced inflammation mediators and the apoptotic process. C6S failed to decrease NO production, although iNOS expression and activity were significantly reduced. HS, like C4S, was able to reduce all the effects stimulated by LPS treatment. KS and DS produced no reduction in any of the parameters considered. These results give further support to the hypothesis that GAGs actively participate in the regulation of inflammatory and apoptotic processes.

1 Bookmark
 · 
198 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin sulfate (CS) is a symptomatic slow acting drug for osteoarthritis (OA) widely used for the treatment of this highly prevalent disease, characterized by articular cartilage degradation. However, little is known about its mechanism of action, and recent large scale clinical trials have reported variable results on OA symptoms. Herein, we aimed to study the modulations in the intracellular proteome and the secretome of human articular cartilage cells (chondrocytes) treated with three different CS compounds, with different origin or purity, by two complementary proteomic approaches. Osteoarthritic cells were treated with 200 μg/ml of each brand of CS. Quantitative proteomics experiments were carried out by the DIGE and stable isotope labeling with amino acids in cell culture (SILAC) techniques, followed by LC-MALDI-MS/MS analysis. The DIGE study, carried out on chondrocyte whole cell extracts, led to the detection of 46 spots that were differential between conditions in our study: 27 were modulated by CS1, 4 were modulated by CS2, and 15 were modulated by CS3. The SILAC experiment, carried out on the subset of chondrocyte-secreted proteins, allowed us to identify 104 different proteins. Most of them were extracellular matrix components, and 21 were modulated by CS1, 13 were modulated by CS2, and 9 were modulated by CS3. Each of the studied compounds induces a characteristic protein profile in OA chondrocytes. CS1 displayed the widest effect but increased the mitochondrial superoxide dismutase, the cartilage oligomeric matrix protein, and some catabolic or inflammatory factors like interstitial collagenase, stromelysin-1, and pentraxin-related protein. CS2 and CS3, on the other hand, increased a number of structural proteins, growth factors, and extracellular matrix proteins. Our study shows how, from the three CS compounds tested, CS1 induces the activation of inflammatory and catabolic pathways, whereas CS2 and CS3 induce an anti-inflammatory and anabolic response. The data presented emphasize the importance of employing high quality CS compounds, supported by controlled clinical trials, in the therapy of OA. Finally, the present work exemplifies the usefulness of proteomic approaches in pharmacological studies.
    Molecular &amp Cellular Proteomics 12/2011; 11(6):M111.013417. · 7.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MMP28 (epilysin) is a recently discovered member of the MMP (matrix metalloproteinase) family that is, amongst others, expressed in osteoarthritic cartilage and intervertebral disc (IVD) tissue. In this study the hypothesis that increased expression of MMP28 correlates with higher grades of degeneration and is stimulated by the presence of proinflammatory molecules was tested. Gene expression levels of MMP28 were investigated in traumatic and degenerative human IVD tissue and correlated to the type of disease and the degree of degeneration (Thompson grade). Quantification of MMP28 gene expression in human IVD tissue or in isolated cells after stimulation with the inflammatory mediators lipopolysaccharide (LPS), interleukin (IL)-1β, tumor necrosis factor (TNF)-α or the histondeacetylase inhibitor trichostatin A was performed by real-time RT PCR. While MMP28 expression was increased in individual cases with trauma or disc degeneration, there was no significant correlation between the grade of disease and MMP28 expression. Stimulation with LPS, IL-1β, TNF-α or trichostatin A did not alter MMP28 gene expression at any investigated time point or any concentration. Our results demonstrate that gene expression of MMP28 in the IVD is not regulated by inflammatory mechanisms, is donor-dependent and cannot be positively or negatively linked to the grade of degeneration and only weakly to the occurrence of trauma. New hypotheses and future studies are needed to find the role of MMP28 in the intervertebral disc.
    Journal of Negative Results in BioMedicine 07/2011; 10:9. · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological evidences suggested an inverse association between the use of glucosamine supplements and colorectal cancer (CRC) risk. In this study, the efficacy of glucosamine to attenuate dextran sodium sulfate (DSS)-induced colitis, a precancerous condition for CRC was evaluated. C57BL/6 mice were separated into three groups receiving glucosamine sulfate at concentrations of 0, 0.05 and 0.10% (w/w) of AIN-93G diet, respectively for 4 weeks. Colitis was induced by supplying two cycles (5 days per cycle) of 2% DSS in the animals' drinking water. Glucosamine supplementation at the level of 0.10% of the diet (w/w) reduced colitis-associated symptoms as measured by disease activity index (DAI). Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NF-κB mRNA expression in the colonic mucosa was significantly lower in animals fed 0.10% glucosamine compared to those of the control group. Expression of the tight junction proteins ZO-1 and occludin was significantly higher in the 0.10% glucosamine-supplemented group compared to the other groups. Also, colonic protein expression of lipocalin 2, and serum concentrations of interleukin-8 (IL-8) and amyloid P component (SAP) were significantly reduced in the 0.10% glucosamine-supplemented group compared to the control group. These results suggest that glucosamine attenuates the colitis disease activity by suppressing NF-κB activation and related inflammatory responses.
    Journal of Gastroenterology and Hepatology 12/2013; · 3.33 Impact Factor