Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels.

Department of Physiology I, University of Tuebingen, Germany.
Circulation Research (Impact Factor: 11.86). 12/2008; 103(12):1451-7. DOI: 10.1161/CIRCRESAHA.108.177360
Source: PubMed

ABSTRACT Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serum- and glucocorticoid-inducible kinase (SGK)1, which in turn stimulates I(Ks), a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in I(Ks) channel alpha (KCNQ1, KvLQT1, Kv7.1) or beta (KCNE1, IsK, minK) subunits cause long QT syndrome (LQTS), an inherited cardiac arrhythmia associated with increased risk of sudden death. Together with the GTPases RAB5 and RAB11, SGK1 facilitates membrane recycling of KCNQ1 channels. Here, we show altered SGK1-dependent regulation of LQTS-associated mutant I(Ks) channels. Whereas some mutant KCNQ1 channels had reduced basal activity but were still activated by SGK1, currents mediated by KCNQ1(Y111C) or KCNQ1(L114P) were paradoxically reduced by SGK1. Heteromeric channels coassembled of wild-type KCNQ1 and the LQTS-associated KCNE1(D76N) mutant were similarly downregulated by SGK1 because of a disrupted RAB11-dependent recycling. Mutagenesis experiments indicate that stimulation of I(Ks) channels by SGK1 depends on residues H73, N75, D76, and P77 in KCNE1. Identification of the I(Ks) recycling pathway and its modulation by stress-stimulated SGK1 provides novel mechanistic insight into potentially fatal cardiac arrhythmias triggered by physical or psychological stress.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The earliest steps of left-right (LR) patterning in Xenopus embryos are driven by biased intracellular transport that ensures a consistently asymmetric localization of maternal ion channels and pumps in the first 2-4 blastomeres. The subsequent differential net efflux of ions by these transporters generates a bioelectrical asymmetry; this L:R voltage gradient redistributes small signaling molecules along the LR axis that later regulate transcription of the normally left-sided Nodal. This system thus amplifies single cell chirality into a true left-right asymmetry across multi-cellular fields. Studies using molecular-genetic gain- and loss-of-function reagents have characterized many of the steps involved in this early pathway in Xenopus. Yet one key question remains: how is the chiral cytoskeletal architecture interpreted to localize ion transporters to the left or right side? Because Rab GTPases regulate nearly all aspects of membrane trafficking, we hypothesized that one or more Rab proteins were responsible for the directed, asymmetric shuttling of maternal ion channel or pump proteins. After performing a screen using dominant negative and wildtype (overexpressing) mRNAs for four different Rabs, we found that alterations in Rab11 expression randomize both asymmetric gene expression and organ situs. We also demonstrated that the asymmetric localization of two ion transporter subunits requires Rab11 function, and that Rab11 is closely associated with at least one of these subunits. Yet, importantly, we found that endogenous Rab11 mRNA and protein are expressed symmetrically in the early embryo. We conclude that Rab11-mediated transport is responsible for the movement of cargo within early blastomeres, and that Rab11 expression is required throughout the early embryo for proper LR patterning.
    Mechanisms of development 01/2013; · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners.
    Frontiers in Physiology 01/2012; 3:231.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditons, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). Areas covered: The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. Expert opinion: Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
    Expert Opinion on Investigational Drugs 03/2013; · 4.74 Impact Factor


Available from
May 22, 2014