Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels.

Department of Physiology I, University of Tuebingen, Germany.
Circulation Research (Impact Factor: 11.86). 12/2008; 103(12):1451-7. DOI: 10.1161/CIRCRESAHA.108.177360
Source: PubMed

ABSTRACT Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serum- and glucocorticoid-inducible kinase (SGK)1, which in turn stimulates I(Ks), a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in I(Ks) channel alpha (KCNQ1, KvLQT1, Kv7.1) or beta (KCNE1, IsK, minK) subunits cause long QT syndrome (LQTS), an inherited cardiac arrhythmia associated with increased risk of sudden death. Together with the GTPases RAB5 and RAB11, SGK1 facilitates membrane recycling of KCNQ1 channels. Here, we show altered SGK1-dependent regulation of LQTS-associated mutant I(Ks) channels. Whereas some mutant KCNQ1 channels had reduced basal activity but were still activated by SGK1, currents mediated by KCNQ1(Y111C) or KCNQ1(L114P) were paradoxically reduced by SGK1. Heteromeric channels coassembled of wild-type KCNQ1 and the LQTS-associated KCNE1(D76N) mutant were similarly downregulated by SGK1 because of a disrupted RAB11-dependent recycling. Mutagenesis experiments indicate that stimulation of I(Ks) channels by SGK1 depends on residues H73, N75, D76, and P77 in KCNE1. Identification of the I(Ks) recycling pathway and its modulation by stress-stimulated SGK1 provides novel mechanistic insight into potentially fatal cardiac arrhythmias triggered by physical or psychological stress.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The serum and glucocorticoid kinase (SGK) family of serine/threonine kinases consists of three isoforms, SGK-1, SGK-2 and SGK-3. This family of kinases is highly homologous to the AKT kinase family, sharing similar upstream activators and downstream targets. SGKs have been implicated in the regulation of cell growth, proliferation, survival and migration: cellular processes that are dysregulated in cancer. Furthermore, SGKs lie downstream of phosphoinositide-3-kinase (PI3Kinase) signalling and interact at various levels with RAS/RAF/ERK signalling, two pathways that are involved in promoting tumorigenesis. Recent evidence suggests that mutant PI3Kinase can induce tumorigenesis through an AKT-independent but SGK3-dependent mechanism, thus implicating SGKs as potential players in malignant transformation. Here, we will review the current state of knowledge on the regulation of the SGKs and their role in normal cell physiology and transformation with a particular focus on SGK3.
    Growth factors (Chur, Switzerland) 10/2010; 28(6):394-408. · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atrial fibrillation (AF) is the most common cardiac arrhythmia. The preferred therapy for AF is sustained sinus rhythm control; however, the efficacy of currently used antiarrythmic drugs is limited by adverse side effects resulting from both a lack of ion channel selectivity and nonspecific ventricular activity. The role of the voltage-gated potassium channels in atrial myocyte repolarization and the subsequent control of action potential duration renders them attractive targets for antiarrhythmic drugs in the treatment of AF. Conventional antiarrhythmic drugs generally target the ion permeability of potassium channels. This review discusses the limitations of this traditional approach and introduces, as a novel paradigm for antiarrhythmic pharmacology, the decrease of ion channel cell surface density through the modulation of ion channel trafficking pathways.
    Molecular Interventions 05/2009; 9(2):79-86. · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pregnancy is typically paralleled by substantial increase in maternal extracellular fluid volume, requiring net accumulation of water and NaCl. The positive water and salt balance is accomplished at least in part by increased uptake of salt secondary to enhanced salt appetite. Little is known about the underlying cellular mechanisms. Stimulation of salt appetite by mineralocorticoids, however, is known to be dependent on the serum- and glucocorticoid-inducible kinase SGK1. To test for a role of SGK1 in the stimulation of salt appetite during pregnancy, fluid intake was recorded in pregnant SGK1 knockout mice (sgk1(-/-) ) and their wild type littermates (sgk1(+/+) ). The mice were offered two bottles, one with plain water and the other with isotonic saline. In early pregnancy, i.e. up to 10 days prior to parturition, the sgk1(+/+) mice displayed a significant preference for saline, whereas the sgk1(-/-) mice preferred water. Accordingly, the water intake was significantly smaller and saline intake was significantly larger in sgk1(+/+) mice than in sgk1(-/-) mice and the preference for water was significantly stronger in sgk1(-/-) mice than in sgk1(+/+) mice. Plasma aldosterone levels were higher in sgk1(-/-) mice than in sgk1(+/+) mice, a difference contrasting the enhanced salt appetite of sgk1(+/+) mice. SGK1 participates in the stimulation of salt appetite during pregnancy.
    Acta Physiologica 01/2011; 202(1):39-45. · 4.38 Impact Factor


Available from
May 22, 2014