Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002).

Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China.
Journal of General Virology (Impact Factor: 3.53). 01/2009; 89(Pt 12):3102-12. DOI: 10.1099/vir.0.2008/005652-0
Source: PubMed

ABSTRACT In the current study, we characterized H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation during a 5 year period (1998-2002). Phylogenetic analysis of the 8 genes of 11 representative viruses showed that they all shared high similarity to that of the first isolate, A/Chicken/Shanghai/F/1998 (Ck/SH/F/98), and clustered to the same lineages. Furthermore, all 11 viruses had a 9 nt deletion between positions 206 and 214 of the neuraminidase gene. These genetic characteristics strongly suggest that these viruses are descendants of the first isolate. In addition, our study also showed that the H9N2 viruses circulating in the operation during this 5 year period were evolving, as shown by antigenic variations between viruses manifested by reactivity with polyclonal antisera and monoclonal antibodies, by haemagglutination with erythrocytes from different animals, by amino acid differences in haemagglutinin and neuraminidase proteins, and by variation in their ability to replicate in the respiratory and intestinal tract and to be transmitted by aerosol. Phylogenetic analysis revealed that the internal genes from some H5N1 viruses of duck origin clustered together with those from H9N2 virus and that the RNP genes of these H5N1 viruses isolated after 2001 are more closely related to the genes of the Ck/SH/F/98-like H9N2 viruses, indicating more recent reassortment events between these two subtypes of viruses. Continuous surveillance of influenza virus in poultry and waterfowl is critical for monitoring the genesis and emergence of potentially pandemic strains in this region.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian influenza viruses of subtype H9N2 are widely prevalent in poultry in many Asian countries, and the segmented nature of the viral genome results in multiple distinct genotypes via reassortment. In this study, genetic evolution of H9N2 viruses circulating in eastern China during 2007-2013 was analyzed. The results showed that the diversity of the gene constellations generated six distinct genotypes, in which a novel genotype (S) bearing the backbone of A/chicken/Shanghai/F/98-like viruses by acquiring A/quail/Hong Kong/G1/97-like polymerase basic subunit 2 and matrix genes has gradually established its ecological niche and been consistently prevalent in chicken flocks in eastern China since its first detection in 2007. Furthermore, genotype S possessed the peculiarity to donate most of its gene segments to other emerging influenza A viruses in China, including the novel reassortant highly pathogenic avian influenza H5N2, the 2013 novel H7N7, H7N9 and the latest reassortant H10N8 viruses, with potential threat to poultry industry and human health.
    Veterinary Microbiology 10/2014; 174(3-4). DOI:10.1016/j.vetmic.2014.09.029 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent human infection with avian influenza virus revealed that H9N2 influenza virus is the gene donor for H7N9 and H10N8 viruses infecting humans. The crucial role of H9N2 viruses at the animal-human interface might be due to the wide host range, adaptation in both poultry and mammalian, and extensive gene reassortment. As the most prevalent subtype of influenza viruses in chickens in China, H9N2 also causes a great economic loss for the poultry industry, even under the long-term vaccination programs. The history, epidemiology, biological characteristics, and molecular determinants of H9N2 influenza virus are reviewed in this paper. The contribution of H9N2 genes, especially RNP genes, to the infection of humans needs to be investigated in the future.
    Protein & Cell 11/2014; 6(1). DOI:10.1007/s13238-014-0111-7 · 2.85 Impact Factor
  • Source
    Science China. Life sciences 01/2015; 58(2). DOI:10.1007/s11427-014-4777-0 · 1.51 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014