Article

A DNA-launched reverse genetics system for rabbit hemorrhagic disease virus reveals that the VP2 protein is not essential for virus infectivity.

Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
Journal of General Virology (Impact Factor: 3.13). 01/2009; 89(Pt 12):3080-5. DOI: 10.1099/vir.0.2008/003525-0
Source: PubMed

ABSTRACT Rabbit hemorrhagic disease virus (RHDV), a member of the family Caliciviridae comprising positive-stranded RNA viruses, is a highly virulent pathogen of rabbits. Until recently, studies into the molecular mechanisms of RHDV replication and pathogenesis have been hindered by the lack of an in vitro culture system and reverse genetics. This study describes the generation of a DNA-based reverse genetics system for RHDV and the subsequent investigation of the biological role of the RHDV VP2 protein. The full-length RHDV genome was assembled as a single cDNA clone and placed under the control of the eukaryotic human cytomegalovirus promoter. Transfection of cells with the DNA clone resulted in a clear cytopathic effect and the generation of infectious progeny virions. The reconstituted virus was stable and grew to titres similar to that of the parental virus. Although previous reports have suggested that the minor structural protein (VP2) of other caliciviruses is essential for the production of infectious virions, using the DNA-launch-based RHDV reverse genetics system described here it was demonstrated that VP2 is not essential for RHDV infectivity. Transfection of cells with a cDNA clone of RHDV lacking VP2 resulted in the generation of infectious virions. These studies indicate that the presence of VP2 could reduce the replication of RHDV, suggesting that it may play a regulatory role in the life cycle of RHDV.

0 Bookmarks
 · 
39 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of rabbit hemorrhagic disease virus (RHDV) has long been hindered by the absence of an in vitro culture system. In this study, using RHDV as a model, a series of DNA-based reporter replicons were constructed in which the firefly luciferase (Fluc) gene was fused in-frame with the open reading frame of the replicon. In this construct, the Fluc gene was inserted where the coding region of viral structural protein was deleted and was under the control of a minimal cytomegalovirus (CMV) immediate-early promoter. Fluc activity analysis showed that these reporter replicons replicate efficiently in mammalian cells. On the basis of the replicon, 5'non-coding regions (5'NCR) and genome-linked protein (VPg) were deleted, and the effect on the expression of replicon was analyzed. The results showed that the expression level of Fluc was reduced in the absence of 5'NCR and VPg, suggesting that the 5'NCR and VPg may play an important role in replication and/or translation of RHDV. To further verify the speculation, we also constructed a replication deficient mutant (pRHDV-luc/Δ3D), and the impact of 5'NCR and VPg deletion on viral translation efficiency was analyzed, our results indicated that both VPg and 5'NCR were involved in RHDV translation.
    PLoS ONE 01/2013; 8(5):e60316. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Murine norovirus, currently the only norovirus that replicates efficiently in tissue culture, has of-fered scientists the first chance to study the entire norovirus life cycle in the laboratory. In addition, the development of reverse genetics for murine norovirus has provided the ideal opportunity for researchers to determine how variation at the genetic level affects pathogenicity in the natural host. Despite differences in the diseases caused by human and murine noroviruses, they possess a significant amount of genetic similarity; hence the general mechanisms of viral genome translation and replication are likely to be highly conserved. Here we aim to summarize our current under-standing of the mechanisms of norovirus transla-tion and replication, highlighting the important role of murine norovirus as a model system in the study of norovirus biology. Introduction Significant advances have been made in the study of human norovirus replication in tissue culture, namely the generation of stable replicon contain-ing cell lines (Chang et al., 2006), the observation that norovirus replication and packaging can be driven in tissue culture (Asanaka et al., 2005; Katayama et al., 2006) and the demonstration that norovirus RNA purified from stool samples is infectious (Guix et al., 2007). However, despite epic efforts (Duizer et al., 2004), a reproducible system to allow the study of the complete human norovirus life cycle remains elusive. Preliminary results have suggested that a highly differentiated tissue culture system may allow human norovirus propagation (Straub et al., 2007), however further studies are required to validate these observa-tions. The identification of murine norovirus (MNV) in 2003 heralded a new era for the study of the basic mechanisms of norovirus translation and replication, as for the first time it provided researchers with a norovirus capable of a full in-fectious cycle in tissue culture (Karst et al., 2003; Wobus et al., 2004). Until the 'missing-link' which will allow human noroviruses to grow efficiently in tissue culture is identified, which recent studies suggest may be at the level of virus entry (Guix et al., 2007), MNV offers the best readily available and easily manipulated norovirus experimental system. In this chapter we aim to summarize how the MNV model has been used to further our understanding of norovirus translation and replication.
    06/2010: pages 205;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic disease (RHD) in adult European rabbits (Oryctolagus cuniculus). First described in China in 1984, the virus rapidly spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the virus.
    Veterinary Research 02/2012; 43(1):12. · 3.43 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
May 31, 2014