Serotonin Uptake Is Largely Mediated by Platelets versus Lymphocytes in Peripheral Blood Cells

Huck Institutes of the Life Sciences and Department of Veterinary & Biomedical Sciences, Pennsylvania State University , University Park, Pennsylvania, United States.
ACS Chemical Neuroscience (Impact Factor: 4.36). 01/2013; 4(1):161-170. DOI: 10.1021/cn300146w
Source: PubMed


The serotonin transporter (SERT), a primary target for many antidepressants, is expressed in the brain and also in peripheral blood cells. Although platelet SERT function is well accepted, lymphocyte SERT function has not been definitively characterized. Due to their small size, platelets often are found in peripheral blood mononuclear cell preparations aimed at isolating lymphocytes, monocytes, and macrophages. The presence of different cells makes it difficult to assign SERT expression and function to specific cell types. Here, we use flow cytometry and IDT307, a monoamine transporter substrate that fluoresces after uptake into cells, to investigate SERT function in lymphocyte and platelet populations independently, as well as simultaneously without prior isolation. We find that murine lymphocytes exhibit temperature-dependent IDT307 transport but uptake is independent of SERT. Lack of measurable SERT function in lymphocytes was corroborated by chronoamperometry using serotonin as a substrate. When we examined rhesus and human mixed blood cell populations, we found that platelets, and not lymphocytes, were primary contributors to SERT function. Overall, these findings indicate that lymphocyte SERT function is minimal. Moreover, flow cytometry, in conjunction with the fluorescent transporter substrate IDT307, can be widely applied to investigate SERT in platelets from populations of clinical significance.

12 Reads

  • ACS Nano 10/2012; 6(10):8463-4. DOI:10.1021/nn304724q · 12.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function.
    ACS Nano 03/2013; 7(3). DOI:10.1021/nn4012847 · 12.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously introduced fluorescent false neurotransmitters (FFNs) as optical reporters that enable visualization of individual dopaminergic presynaptic terminals and their activity in the brain. In this context, we examined the fluorescent pyridinium dye 4-(4-dimethylamino)phenyl-1-methylpyridinium (APP+), a fluorescent analogue of the dopaminergic neurotoxin MPP+, in acute mouse brain tissue. APP+ is a substrate for the dopamine transporter (DAT), norepinephrine transporter (NET), and serotonin transporter (SERT), and as such represented a candidate for the development of new FFN probes. Here we report that APP+ labels cell bodies of catecholaminergic neurons in the midbrain in a DAT- and NET-dependent manner, as well as fine dopaminergic axonal processes in the dorsal striatum. APP+ destaining from presynaptic terminals in the dorsal striatum was also examined under the conditions inducing depolarization and exocytotic neurotransmitter release. Application of KCl led to a small but significant degree of destaining (approximately 15% compared to control), which stands in contrast to a nearly complete destaining of the new generation FFN agent, FFN102. Electrical stimulation of brain slices at 10 Hz afforded no significant change in the APP+ signal. These results indicate that the majority of the APP+ signal in axonal processes originates from labeled organelles including mitochondria, whereas only a minor component of the APP+ signal represents the releasable synaptic vesicular pool. These results also show that APP+ may serve as a useful probe for identifying catecholaminergic innervations in the brain, although it is a poor candidate for the development of FFNs.
    ACS Chemical Neuroscience 05/2013; 4(5). DOI:10.1021/cn400038u · 4.36 Impact Factor
Show more