Article

Characterization of the Yeast Actin Patch Protein App1p Phosphatidate Phosphatase.

Rutgers University, United States.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2013; DOI: 10.1074/jbc.M112.449629
Source: PubMed

ABSTRACT Yeast App1p is a phosphatidate phosphatase (PAP) that associates with endocytic proteins at cortical actin patches. App1p, which catalyzes the conversion of phosphatidate (PA) to diacylglycerol, is unique among Mg(2+)-dependent PAP enzymes in that its reaction is not involved with de novo lipid synthesis. Instead, App1p PAP is thought to play a role in endocytosis because its substrate and product facilitate membrane fission/fusion events and regulate enzymes that govern vesicular movement. App1p PAP was purified from yeast and characterized with respect to its enzymological, kinetic, and regulatory properties. Maximum PAP activity was dependent on Triton X-100 (20 mM), PA (2 mM), Mg(2+) (0.5 mM), and 10 mM 2-mercaptoethanol at pH 7.5 and 30 (o)C. Analysis of surface dilution kinetics with Triton X-100/PA-mixed micelles yielded constants for surface binding (K(s) = 11 mM), interfacial PA binding (K(m) = 4.2 mol %), and catalytic efficiency (V(max) = 557 µmol/min/mg). The activation energy, turnover number, and equilibrium constant were 16.5 kcal/mol, 406 s(-1), and 16.2, respectively. PAP activity was stimulated by anionic lipids (cardiolipin, phosphatidylglycerol, phosphatidylserine, and CDP-diacylglycerol) and inhibited by zwitterionic (phosphatidylcholine and phosphatidylethanolamine) and cationic (sphinganine) lipids, nucleotides (ATP and CTP), N-ethylmaleimide, propranolol, phenylglyoxal, and divalent cations (Ca(2+), Mn(2+), and Zn(2+)). App1p also utilized diacylglycerol pyrophosphate and lysoPA as substrates with specificity constants 4-fold and 7-fold lower, respectively, when compared with PA.

0 Bookmarks
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids in the exponential phase of growth occurs at the expense of the storage lipid triacylglycerol. As exponential phase cells progress into the stationary phase, the synthesis of triacylglycerol occurs at the expense of phospholipids. Early work indicates a role of the phosphatidate phosphatase (PAP) in this metabolism; the enzyme produces the diacylglycerol needed for the synthesis of triacylglycerol and simultaneously controls the level of phosphatidate for the synthesis of phospholipids. Four genes (APP1, DPP1, LPP1, and PAH1) encode PAP activity in yeast, and it has been unclear which gene is responsible for the synthesis of triacylglycerol throughout growth. An analysis of lipid synthesis and composition, as well as PAP activity in various PAP mutant strains showed the essential role of PAH1 in triacylglycerol synthesis throughout growth. Pah1p is a phosphorylated enzyme whose in vivo function is dependent on its dephosphorylation by the Nem1p-Spo7p protein phosphatase complex. nem1Δ mutant cells exhibited defects in triacylglycerol synthesis and lipid metabolism that mirrored those imparted by the pah1Δ mutation, substantiating the importance of Pah1p dephosphorylation throughout growth. An analysis of cells bearing PPAH1-lacZ and PPAH1-DPP1 reporter genes showed that PAH1 expression was induced throughout growth and that the induction in the stationary phase was stimulated by inositol supplementation. A mutant analysis indicated that the Ino2p/Ino4p,/Opi1p regulatory circuit and transcription factors Gis1p and Rph1p mediated this regulation.
    Journal of Biological Chemistry 11/2013; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.
    PLoS ONE 08/2014; 9(8):e104194. · 3.53 Impact Factor