Transport of misfolded endoplasmic reticulum proteins to the cell surface by MHC class II molecules.

Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
International Immunology (Impact Factor: 3.18). 01/2013; 25(4):235-246. DOI: 10.1093/intimm/dxs155
Source: PubMed

ABSTRACT Nascent MHC class II molecules are associated with the invariant chain and are transported to the endolysosomal pathway, where MHC class II molecules acquire peptide antigens. On the other hand, misfolded endoplasmic reticulum (ER) proteins are generally degraded in the cells and are neither expressed on the cell surface nor secreted. Here, we found that MHC class II molecules associate with some misfolded ER proteins via the peptide-binding groove in competition with invariant chain. The misfolded proteins associated with MHC class II molecules are transported intact to the cell surface without processing to peptides. Furthermore, these complexes efficiently stimulate antigen-specific B cells. These findings reveal that MHC class II molecules function as a chaperone for the cell surface expression of misfolded ER proteins. In addition, we suggest that MHC class II molecules present not only peptides but also intact host-cell-derived proteins on the cell surface. These findings provide new insights into the function of MHC class II molecules.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Specific HLA class II alleles are strongly associated with susceptibility to rheumatoid arthritis (RA); however, how HLA class II regulates susceptibility to RA has remained unclear. Recently, we found a unique function of HLA class II molecules: their ability to aberrantly transport cellular misfolded proteins to the cell surface without processing to peptides. Rheumatoid factor (RF) is an autoantibody that binds to denatured IgG or Fc fragments of IgG and is detected in 70-80% of RA patients but also in patients with other diseases. Here, we report that intact IgG heavy chain (IgGH) is transported to the cell surface by HLA class II via association with the peptide-binding groove and that IgGH/HLA class II complexes are specifically recognized by autoantibodies in RF-positive sera from RA patients. In contrast, autoantibodies in RF-positive sera from non-RA individuals did not bind to IgGH/HLA class II complexes. Of note, a strong correlation between autoantibody binding to IgG complexed with certain HLA-DR alleles and the odds ratio for that allele's association with RA was observed (r = 0.81; P = 4.6 × 10(-5)). Our findings suggest that IgGH complexed with certain HLA class II alleles is a target for autoantibodies in RA, which might explain why these HLA class II alleles confer susceptibility to RA.
    Proceedings of the National Academy of Sciences 02/2014; DOI:10.1073/pnas.1401105111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imbalance between proinflammatory and anti-inflammatory cytokines may regulate the inflammatory reaction in the nasal polyps. Polymorphisms in the regulatory regions of the cytokines genes may influence their expression. The aim of this study was to investigate the relationship between an IL-1β and IL-4 promoter polymorphisms and nasal polyps. The C-511T promoter polymorphism of the IL-1β gene and C-590T promoter polymorphism of the IL-4 gene were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis in 208 Polish patients with nasal polyps and 200 healthy Polish subjects. The risk of susceptibility to NP was significantly higher in patients with NP who had -511 T/T genotype of IL1β than in controls (OR 3.07; 95 % CI 1.18-7.99). No statistically significant differences were found between NP patients and the control group with regard to genotype distribution and allele frequencies of C/T polymorphism of IL4 gene. Our study demonstrated that the TT genotype for C-511T mutation associated with the risk of developing NP in a Polish population.
    Molecular Biology Reports 03/2014; DOI:10.1007/s11033-014-3336-x · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy complications. β2-glycoprotein I (β2GPI) complexed with phospholipid is recognized as a major target for autoantibodies in APS; however, less than half of the patients with clinical manifestations of APS possess autoantibodies against the complexes. Therefore, the range of autoantigens involved in APS remains unclear. Recently, we found that HLA class II molecules transport misfolded cellular proteins to the cell surface via association with their peptide-binding grooves. Furthermore, IgG heavy chain/HLA class II complexes were specific targets for autoantibodies in rheumatoid arthritis. Here, we demonstrate that intact β2GPI, not peptide, forms a complex with HLA class II molecules. Strikingly, 100 of the 120 APS patients (83.3%) analyzed, including those whose antiphospholipid antibody titers were within normal range, possessed autoantibodies that recognize β2GPI/HLA class II complexes in the absence of phospholipids. In situ association between β2GPI and HLA class II was observed in placental tissues of APS patients but not in healthy controls. Furthermore, autoantibodies against β2GPI/HLA class II complexes mediated complement-dependent cytotoxicity against cells expressing the complexes. These data suggest that β2GPI/HLA class II complexes are a target in APS that might be involved in the pathogenesis. Copyright © 2015 American Society of Hematology.
    Blood 03/2015; DOI:10.1182/blood-2014-08-593624 · 9.78 Impact Factor