Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues

Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
Cell (Impact Factor: 33.12). 01/2013; 152(3). DOI: 10.1016/j.cell.2012.12.033
Source: PubMed

ABSTRACT Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenomic data from ENCODE can be used to associate specific combinations of chromatin marks with regulatory elements in the human genome. Hidden Markov models and the expectation-maximization (EM) algorithm are often used to analyze epigenomic data. However, the EM algorithm can have overfitting problems in data sets where the chromatin states show high class-imbalance and it is often slow to converge. Here we use spectral learning instead of EM and find that our software Spectacle overcame these problems. Furthermore, Spectacle is able to find enhancer subtypes not found by ChromHMM but strongly enriched in GWAS SNPs. Spectacle is available at Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0598-0) contains supplementary material, which is available to authorized users.
    Genome Biology 12/2015; 16(1). DOI:10.1186/s13059-015-0598-0 · 10.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic activation and inactivation of gene regulatory DNA produce the expression changes that drive the differentiation of cellular lineages. Identifying regulatory regions active during developmental transitions is necessary to understand how the genome specifies complex developmental programs and how these processes are disrupted in disease. Gene regulatory dynamics are mediated by many factors, including the binding of transcription factors (TFs) and the methylation and acetylation of DNA and histones. Genome-wide maps of TF binding and DNA and histone modifications have been generated for many cellular contexts; however, given the diversity and complexity of animal development, these data cover only a small fraction of the cellular and developmental contexts of interest. Thus, there is a need for methods that use existing epigenetic and functional genomics data to analyze the thousands of contexts that remain uncharacterized. To investigate the utility of histone modification data in the analysis of cellular contexts without such data, I evaluated how well genome-wide H3K27ac and H3K4me1 data collected in different developmental stages, tissues, and species were able to predict experimentally validated heart enhancers active at embryonic day 11.5 (E11.5) in mouse. Using a machine-learning approach to integrate the data from different contexts, I found that E11.5 heart enhancers can often be predicted accurately from data from other contexts, and I quantified the contribution of each data source to the predictions. The utility of each dataset correlated with nearness in developmental time and tissue to the target context: data from late developmental stages and adult heart tissues were most informative for predicting E11.5 enhancers, while marks from stem cells and early developmental stages were less informative. Predictions based on data collected in non-heart tissues and in human hearts were better than random, but worse than using data from mouse hearts. The ability of these algorithms to accurately predict developmental enhancers based on data from related, but distinct, cellular contexts suggests that combining computational models with epigenetic data sampled from relevant contexts may be sufficient to enable functional characterization of many cellular contexts of interest.
    BMC Genomics 02/2015; 16(1):104. DOI:10.1186/s12864-015-1264-3 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary cells enter replicative senescence after a limited number of cell divisions. This process needs to be considered in cell culture experiments, and it is particularly important for regenerative medicine. Replicative senescence is associated with reproducible changes in DNA methylation (DNAm) at specific sites in the genome. The mechanism that drives senescence-associated DNAm changes remains unknown - it may involve stochastic DNAm drift due to imperfect maintenance of epigenetic marks or it is directly regulated at specific sites in the genome. In this study, we analyzed the reorganization of nuclear architecture and DNAm changes during long-term culture of human fibroblasts and mesenchymal stromal cells (MSCs). We demonstrate that telomeres shorten and shift towards the nuclear center at later passages. In addition, DNAm profiles, either analyzed by MethylCap-seq or by 450k IlluminaBeadChip technology, revealed consistent senescence-associated hypermethylation in regions associated with H3K27me3, H3K4me3, and H3K4me1 histone marks, whereas hypomethylation was associated with chromatin containing H3K9me3 and lamina-associated domains (LADs). DNA hypermethylation was significantly enriched in the vicinity of genes that are either up- or downregulated at later passages. Furthermore, specific transcription factor binding motifs (e.g. EGR1, TFAP2A, and ETS1) were significantly enriched in differentially methylated regions and in the promoters of differentially expressed genes. Senescence-associated DNA hypermethylation occurs at specific sites in the genome and reflects functional changes in the course of replicative senescence. These results indicate that tightly regulated epigenetic modifications during long-term culture contribute to changes in nuclear organization and gene expression.
    Clinical Epigenetics 03/2015; 7(1):19. DOI:10.1186/s13148-015-0057-5 · 6.22 Impact Factor