Article

Malaria Parasites Co-opt Human Factor H to Prevent Complement-Mediated Lysis in the Mosquito Midgut.

Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany.
Cell host & microbe (Impact Factor: 13.02). 01/2013; 13(1):29-41. DOI: 10.1016/j.chom.2012.11.013
Source: PubMed

ABSTRACT Human complement is a first line defense against infection in which circulating proteins initiate an enzyme cascade on the microbial surface that leads to phagocytosis and lysis. Various pathogens evade complement recognition by binding to regulator proteins that protect host cells from complement activation. We show that emerging gametes of the malaria parasite Plasmodium falciparum bind the host complement regulator factor H (FH) following transmission to the mosquito to protect from complement-mediated lysis by the blood meal. Human complement is active in the mosquito midgut for approximately 1 hr postfeeding. During this period, the gamete surface protein PfGAP50 binds to FH and uses surface-bound FH to inactivate the complement protein C3b. Loss of FH-mediated protection, either through neutralization of FH or blockade of PfGAP50, significantly impairs gametogenesis and inhibits parasite transmission to the mosquito. Thus, Plasmodium co-opts the protective host protein FH to evade complement-mediated lysis within the mosquito midgut.

0 Bookmarks
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has hemolytic activities towards erythrocytes. PPLP2-deficient (PPLP2(-)) merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(-) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(-) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(-) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(-) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(-) loss-of-function phenotype. We propose that the hemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm.
    Cellular Microbiology 03/2014; · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nearly one million people are killed every year by the malaria parasite Plasmodium . Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
    Memórias do Instituto Oswaldo Cruz 04/2014; · 1.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the process of blood feeding insect vectors are exposed to an array of vertebrate-derived blood factors ranging from byproducts of blood meal digestion to naturally occurring products in the blood including growth hormones, cytokines and factors derived from blood-borne pathogens themselves. In this review, we examine the ability of these ingested vertebrate blood factors to alter the innate pathogen defenses of insect vectors. The ability of these factors to modify the immune responses of insect vectors offers new intriguing targets for blocking or reducing transmission of human disease-causing pathogens.
    Current Opinion in Insect Science. 09/2014;

Full-text

Download
79 Downloads
Available from
May 31, 2014