PTK7 recruits dsh to regulate neural crest migration.

Department of Developmental Biochemistry, Center for Molecular Physiology of the Brain (CMPB 37077 Goettingen, Germany.
Development (Impact Factor: 6.27). 01/2009; 135(24):4015-24. DOI: 10.1242/dev.023556
Source: PubMed

ABSTRACT PTK7 regulates planar cell polarity (PCP) signaling during vertebrate neural tube closure and establishment of inner ear hair cell polarity; however, its signaling mechanism is unknown. Here, we demonstrate a new function for PTK7 in Xenopus neural crest migration and use this system in combination with in vitro assays to define the intersection of PTK7 with the non-canonical Wnt signaling pathway that regulates PCP. In vitro, using Xenopus ectodermal explants, we show that PTK7 recruits dishevelled (dsh) to the plasma membrane, a function that is dependent on the PDZ domain of dsh, as well as on the conserved kinase domain of PTK7. Furthermore, endogenous PTK7 is required for frizzled7-mediated dsh localization. Immunoprecipitation experiments confirm that PTK7 can be found in a complex with dsh and frizzled7, suggesting that it cooperates with frizzled to localize dsh. To evaluate the in vivo relevance of the PTK7-mediated dsh localization, we analyzed Xenopus neural crest migration, as loss-of-function of PTK7 inhibits neural crest migration in whole embryos as well as in transplanted neural crest cells. Supporting the in vivo role of PTK7 in the localization of dsh, a PTK7 deletion construct deficient in dsh binding inhibits neural crest migration. Furthermore, the PTK7-mediated membrane localization of a dsh deletion mutant lacking PCP activity inhibits neural crest migration. Thus, PTK7 regulates neural crest migration by recruiting dsh, providing molecular evidence of how PTK7 intersects with the PCP signaling pathway to regulate vertebrate cell movements.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
    Developmental Biology 01/2012; 366(1):34-54. DOI:10.1016/j.ydbio.2011.12.041 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signalling is an evolutionarily conserved pathway that directs cell-fate determination and morphogenesis during metazoan development. Wnt ligands are secreted glycoproteins that act at a distance causing a wide range of cellular responses from stem cell maintenance to cell death and cell proliferation. How Wnt ligands cause such disparate responses is not known, but one possibility is that different outcomes are due to different receptors. Here, we examine PTK7/Otk, a transmembrane receptor that controls a variety of developmental and physiological processes including the regulation of cell polarity, cell migration and invasion. PTK7/Otk co-precipitates canonical Wnt3a and Wnt8, indicating a role in Wnt signalling, but PTK7 inhibits rather than activates canonical Wnt activity in Xenopus, Drosophila and luciferase reporter assays. Loss of PTK7 function activates canonical Wnt signalling and epistasis experiments place PTK7 at the level of the Frizzled receptor. In Drosophila, Otk interacts with Wnt4 and opposes canonical Wnt signalling in embryonic patterning. We propose a model where PTK7/Otk functions in non-canonical Wnt signalling by turning off the canonical signalling branch.
    The EMBO Journal 07/2011; 30(18):3729-40. DOI:10.1038/emboj.2011.236 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor protein tyrosine kinase 7 (PTK7) was recently shown to participate in noncanonical Wnt/planar cell polarity signalling during mouse and frog embryonic development. In this study, we report that PTK7 interacts with β-catenin in a yeast two-hybrid assay and mammalian cells. PTK7-deficient cells exhibit weakened β-catenin/T-cell factor transcriptional activity on Wnt3a stimulation. Furthermore, Xenopus PTK7 is required for the formation of Spemann's organizer and for Siamois promoter activation, events that require β-catenin transcriptional activity. Using epistatic assays, we demonstrate that PTK7 functions upstream from glycogen synthase kinase 3. Taken together, our data reveal a new and conserved role for PTK7 in the Wnt canonical signalling pathway.
    EMBO Reports 01/2011; 12(1):43-9. DOI:10.1038/embor.2010.185 · 7.86 Impact Factor