Strategies for PHA production by mixed cultures and renewable waste materials.

REQUIMTE/CQFB, Chemistry Department, FCT/UNL, 2829 516, Caparica, Portugal.
Applied Microbiology and Biotechnology (Impact Factor: 3.69). 12/2008; 81(4):615-28. DOI:10.1007/s00253-008-1757-y
Source: PubMed

ABSTRACT Production of polyhydroxyalkanoates (PHA) by mixed cultures has been widely studied in the last decade. Storage of PHA by mixed microbial cultures occurs under transient conditions of carbon or oxygen availability, known respectively as aerobic dynamic feeding and anaerobic/aerobic process. In these processes, PHA-accumulating organisms, which are quite diverse in terms of phenotype, are selected by the dynamic operating conditions imposed to the reactor. The stability of these processes during long-time operation and the similarity of the polymer physical/chemical properties to the one produced by pure cultures were demonstrated. This process could be implemented at industrial scale, providing that some technological aspects are solved. This review summarizes the relevant research carried out with mixed cultures for PHA production, with main focus on the use of wastes or industrial surplus as feedstocks. Basic concepts, regarding the metabolism and microbiology, and technological approaches, with emphasis on the kind of feedstock and reactor operating conditions for culture selection and PHA accumulation, are described. Challenges for the process optimization are also discussed.

0 0
1 Bookmark
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200mg/L).
    Water Research 10/2013; 50C:48-58. · 4.66 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor (SBR). During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism (T-RFLP) analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter, and Pseudomonas, were identified by denaturing gradient gel electrophoresis (DGGE) analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the total of 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and 4 belonged to the Class II PHA synthase. Gas chromatography-mass spectrometry (GC-MS) analysis shows that PHA produced by activated sludge was composed of three types of monomers, 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . This article is protected by copyright. All rights reserved.
    FEMS Microbiology Letters 06/2013; · 2.05 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Using random chemical mutagenesis we obtained the mutant of Cupriavidus necator H16 which was capable of improved (about 35 %) production of poly(3-hydroxybuytrate) (PHB) compared to the wild-type strain. The mutant exhibited significantly enhanced specific activities of enzymes involved in oxidative stress response such as malic enzyme, NADP-dependent isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase. Probably, due to the activation of these enzymes, we also observed an increase of NADPH/NADP(+) ratio. It is likely that as a side effect of the increase of NADPH/NADP(+) ratio the activity of PHB biosynthetic pathway was enhanced, which supported the accumulation of PHB. Furthermore, the mutant was also able to incorporate propionate into copolymer poly(3-hydroxybuytyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] more efficiently than the wild-type strain (Y3HV/prec = 0.17 and 0.29 for the wild-type strain and the mutant, respectively)). We assume that it may be caused by lower availability of oxaloacetate for the utilization of propionyl-CoA in 2-methylcitrate cycle due to increased action of malic enzyme. Therefore, propionyl-CoA was incorporated into copolymer rather than transformed to pyruvate via 2-methylcitrate cycle. Thus, the mutant was capable of the utilization of waste frying oils and the production of P(3HB-co-3HV) with better yields and improved content of 3HV resulting in better mechanical properties of copolymer than the wild-type strain. The results of this work may be used for the development of innovative fermentation strategies for the production of PHA and also it might help to define novel targets for the genetic manipulations of PHA producing bacteria.
    MIRCEN Journal of Applied Microbiology and Biotechnology 06/2013; · 1.08 Impact Factor