Article

Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels

Water Environment Research Group, Public Works Research Institute, 1-6, Minamihara, Tsukuba, Ibaraki Prefecture 305-8516, Japan.
Water Science & Technology (Impact Factor: 1.21). 02/2008; 58(8):1541-6. DOI: 10.2166/wst.2008.742
Source: PubMed

ABSTRACT The existence of pharmaceuticals and personal care products (PPCPs) in the water environment is an emerging problem. In this study, we investigated the toxicity of eleven PPCPs through bioassays on bacteria, algae, crustaceans, amphibians and protozoa, and compared the toxicology indexes with the concentration of PPCPs in river water for ecotoxiclogical risk evaluation. Toxicity of the eleven PPCPs was observed and the values of EC50 or LC50 were in the order of mg/L. A distinctive finding is that antibacterial triclosan affected all aquatic lives tested. The effects of PPCPs varied according to species of lives. Contamination from PPCPs was detected at observation stations on the river, and the range of concentration was in the order of ng/L far lower than the values of toxicity indexes EC50 or LC50. Ecotoxicological risks posed by PPCPs at the observation stations was evaluated using the concentration in the river water and the NOEC examined by AGI tests. The results revealed that three PPCPs, triclosan, clarithromycin, and azithromycin, posed an ecotoxiclogical risk in rivers where wastewater treatment systems are not yet well developed.

1 Bookmark
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trace organic contaminant (TrOC) studies in Australia have, to date, focused on wastewater effluents, leaving a knowledge gap of their occurrence and risk in freshwater environments. This study measured 42 TrOCs including industrial compounds, pesticides, and pharmaceuticals and personal care products by liquid chromatography tandem mass spectrometry at 73 river sites across Australia quarterly for 1 yr. Trace organic contaminants were found in 92% of samples, with a median of three compounds detected per sample (maximum 18). The five most commonly detected TrOCs were the pharmaceuticals salicylic acid (82%, maximum = 1530 ng/L), paracetamol (also known as acetaminophen; 45%, maximum = 7150 ng/L), and carbamazepine (27%, maximum = 682 ng/L), caffeine (65%, maximum = 3770 ng/L), and the flame retardant (2-chloroethyl) phosphate (44%, maximum = 184 ng/L). Pesticides were detected in 28% of the samples. To determine the risk posed by the detected TrOCs to the aquatic environment, hazard quotients were calculated by dividing the maximum concentration detected for each compound by the predicted no-effect concentrations. Three of the 42 compounds monitored (the pharmaceuticals carbamazepine and sulfamethoxazole and the herbicide simazine) had a hazard quotient >1, suggesting that they may be causing adverse effects at the most polluted sites. A further 10 compounds had hazard quotients >0.1, indicating a potential risk; these included four pharmaceuticals, three personal care products, and three pesticides. Most compounds had hazard quotients significantly <0.1. The number of TrOCs measured in this study was limited and further investigations are required to fully assess the risk posed by complex mixtures of TrOCs on exposed biota. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
    Journal of Environmental Quality 09/2014; 43(5):1702-12. DOI:10.2134/jeq2014.01.0012 · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human macrolide antibiotic clarithromycin is widespread in surface waters. Our study shows that its major metabolite 14-hydroxy(R)-clarithromycin is found in surface waters in comparable amounts. This metabolite is known to be pharmacologically active. Additionally, clarithromycin is partly metabolised to N-desmethyl-clarithromycin, which has no antimicrobial activity. For clarithromycin, some ecotoxicological studies on aquatic organisms have been published. However, many of them are not conform with the scientific principles as given in the "Technical guidance for deriving environmental quality standards" (TGD-EQS), because numerous studies were poorly documented and the methods did not contain analytical measurements confirming that the exposure concentrations were in the range of±20% of the nominal concentrations. Ecotoxicological effects of clarithromycin and its two metabolites on the zebrafish Danio rerio (embryo test), the microcrustacean Daphnia magna, the aquatic monocotyledonous macrophyte Lemna minor, the freshwater green alga Desmodesmus subspicatus (Chlorophyta) and the cyanobacterium Anabaena flos-aquae were investigated in compliance with the TGD-EQS. Environmental risk assessment was performed using ErC10 values of Anabaena, the species most sensitive to clarithromycin and 14-hydroxy(R)-clarithromycin in our testing. Based oncomparable toxicity and similar concentrations of clarithromycin and its active metabolite 14-hydroxy(R)-clarithromycin in surface waters, an additional multiplication factor of 2 to the assessment factor of 10 on the ErC10 of clarithromycin should be used. Consequently, a freshwater quality standard of 0.130μgL(-1) is proposed for clarithromycin as the "lead substance". Taking this additional multiplication factor of 2 into account, single monitoring of clarithromycin may be sufficient, in order to reduce the number of substances listed for routine monitoring programs.
    Chemosphere 07/2014; 120C:192-198. DOI:10.1016/j.chemosphere.2014.05.089 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Six pharmaceuticals of different categories, such as nonsteroidal anti-inflammatory drugs (ibuprofen, ketoprofen, naproxen, diclofenac), anti-epileptic (carbamazepine), and anti-microbial (trimethoprim), were investigated in wastewater of the urban areas of Ghaziabad and Lucknow, India. Samples were concentrated by solid phase extraction (SPE) and determined by high-performance liquid chromatography (HPLC) methods. The SPE-HPLC method was validated according to the International Conference on Harmonization guidelines. All the six drugs were detected in wastewater of Ghaziabad, whereas naproxen was not detected in Lucknow wastewater. Results suggest that levels of these detected drugs were relatively higher in Ghaziabad as compared to those in Lucknow, and diclofenac was the most frequently detected drug in both the study areas. Detection of these drugs in wastewater reflects the importance of wastewater inputs as a source of pharmaceuticals. In terms of the regional distribution of compounds in wastewater of two cities, higher spatial variations (coefficient of variation 112.90-459.44 %) were found in the Lucknow wastewater due to poor water exchange ability. In contrast, lower spatial variation (162.38-303.77 %) was observed in Ghaziabad. Statistical analysis results suggest that both data were highly skewed, and populations in two study areas were significantly different (p < 0.05). A risk assessment based on the calculated risk quotient (RQ) in six different bioassays (bacteria, duckweed, algae, daphnia, rotifers, and fish) showed that the nonsteroidal anti-inflammatory drugs (NSAIDs) posed high (RQ >1) risk to all the test species. The present study would contribute to the formulation of guidelines for regulation of such emerging pharmaceutical contaminants in the environment.
    Environmental Monitoring and Assessment 07/2014; 186(10). DOI:10.1007/s10661-014-3881-8 · 1.68 Impact Factor