Kinase-dependent modification of dendritic excitability after long-term potentiation.

Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA.
The Journal of Physiology (Impact Factor: 4.38). 12/2008; 587(Pt 1):115-25. DOI: 10.1113/jphysiol.2008.158816
Source: PubMed

ABSTRACT Patterns of presynaptic activity properly timed with postsynaptic action potential output can not only increase the strength of synaptic inputs but can also increase the excitability of dendritic branches of adult CA1 pyramidal neurons. Here, we examined the role of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) in the enhancement of dendritic excitability that occurs during theta-burst pairing of presynaptic and postsynaptic firing activity. Using dendritic and somatic whole-cell recordings in rat hippocampal slices, we measured the increase in the amplitude of back-propagating action potentials in the apical dendrite that occurs in parallel with long-term potentiation (LTP) of synaptic inputs. We found that inhibition of the MAPK pathway prevents this enhancement of dendritic excitability using either a weak or strong LTP induction protocol, while synaptic LTP can still be induced by the strong protocol. Both forms of plasticity are blocked by inhibition of PKA and occluded by interfering with cAMP degradation, consistent with a PKA-mediated increase in MAPK activity following induction of LTP. This provides a signalling mechanism for plasticity of dendritic excitability that occurs during neuronal activity and demonstrates the necessity of MAPK activation. Furthermore, this study uncovers an additional contribution of kinase activation to plasticity that may occur during learning.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global cerebral ischemia following cardiac arrest and cardiopulmonary resuscitation (CA/CPR) causes injury to hippocampal CA1 pyramidal neurons and impairs cognition. Small conductance Ca2+-activated potassium channels type 2 (SK2), expressed in CA1 pyramidal neurons, have been implicated as potential protective targets. Here we showed that, in mice, hippocampal long-term potentiation (LTP) was impaired as early as 3 h after recovery from CA/CPR and LTP remained impaired for at least 30 days. Treatment with the SK2 channel agonist 1-Ethyl-2-benzimidazolinone (1-EBIO) at 30 min after CA provided sustained protection from plasticity deficits, with LTP being maintained at control levels at 30 days after recovery from CA/CPR. Minimal changes in glutamate release probability were observed at delayed times after CA/CPR, implicating post-synaptic mechanisms. Real-time quantitative reverse transcriptase-polymerase chain reaction indicated that CA/CPR did not cause a loss of N-methyl-D-aspartate (NMDA) receptor mRNA at 7 or 30 days after CA/CPR. Similarly, no change in synaptic NMDA receptor protein levels was observed at 7 or 30 days after CA/CPR. Further, patch-clamp experiments demonstrated no change in functional synaptic NMDA receptors at 7 or 30 days after CA/CPR. Electrophysiology recordings showed that synaptic SK channel activity was reduced for the duration of experiments performed (up to 30 days) and that, surprisingly, treatment with 1-EBIO did not prevent the CA/CPR-induced loss of synaptic SK channel function. We concluded that CA/CPR caused alterations in post-synaptic signaling that were prevented by treatment with the SK2 agonist 1-EBIO, indicating that activators of SK2 channels may be useful therapeutic agents to prevent ischemic injury and cognitive impairments.
    European Journal of Neuroscience 07/2014; · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin (DOX) is an anthracycline used widely for cancer chemotherapy. Its primary mode of action appears to be topoisomerase II inhibition, DNA cleavage, and free radical generation. However, in non-neuronal cells, DOX also inhibits the expression of dual-specificity phosphatases (also referred to as MAPK phosphatases) and thereby inhibits the dephosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK), two MAPK isoforms important for long-term memory (LTM) formation. Activation of these kinases by DOX in neurons, if present, could have secondary effects on cognitive functions, such as learning and memory. The present study used cultures of rat cortical neurons and sensory neurons (SNs) of Aplysia to examine the effects of DOX on levels of phosphorylated ERK (pERK) and phosphorylated p38 (p-p38) MAPK. In addition, Aplysia neurons were used to examine the effects of DOX on long-term enhanced excitability, long-term synaptic facilitation (LTF), and long-term synaptic depression (LTD). DOX treatment led to elevated levels of pERK and p-p38 MAPK in SNs and cortical neurons. In addition, it increased phosphorylation of the downstream transcriptional repressor cAMP response element-binding protein 2 in SNs. DOX treatment blocked serotonin-induced LTF and enhanced LTD induced by the neuropeptide Phe-Met-Arg-Phe-NH2. The block of LTF appeared to be attributable to overriding inhibitory effects of p-p38 MAPK, because LTF was rescued in the presence of an inhibitor (SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]) of p38 MAPK. These results suggest that acute application of DOX might impair the formation of LTM via the p38 MAPK pathway.
    Journal of Neuroscience 10/2014; 34(40):13289-300. · 6.75 Impact Factor
  • Source
    Dataset: SK2 and LTP

Full-text (2 Sources)

Available from
Jun 2, 2014