Bmp2 signaling regulates the hepatic versus pancreatic fate decision.

Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA.
Developmental Cell (Impact Factor: 10.37). 12/2008; 15(5):738-48. DOI: 10.1016/j.devcel.2008.08.019
Source: PubMed

ABSTRACT Explant culture data have suggested that the liver and pancreas originate from common progenitors. We used single-cell-lineage tracing in zebrafish to investigate this question in vivo as well as to analyze the hepatic versus pancreatic fate decision. At early somite stages, endodermal cells located at least two cells away from the midline can give rise to both liver and pancreas. In contrast, endodermal cells closer to the midline give rise to pancreas and intestine, but not liver. Loss- and gain-of-function analyses show that Bmp2b, expressed in the lateral plate mesoderm, signals through Alk8 to induce endodermal cells to become liver. When Bmp2b was overexpressed, medially located endodermal cells, fated to become pancreas and intestine, contributed to the liver. These data provide in vivo evidence for the existence of bipotential hepatopancreatic progenitors and indicate that their fate is regulated by the medio-lateral patterning of the endodermal sheet, a process controlled by Bmp2b.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore, we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics, BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm), yet, 24 hr later, suppressed endoderm and induced mesoderm. At lineage bifurcations, cross-repressive signals separated mutually exclusive fates; TGF-β and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations, thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of "pre-enhancer" states before activation, reflecting the establishment of a permissive chromatin landscape as a prelude to differentiation.
    Cell stem cell 01/2014; · 23.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver versus pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate, whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell-fate decisions and outgrowth of the embryonic endodermal anlagen.
    Developmental Cell 02/2014; · 10.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: The definitive endoderm arises as a naive epithelial sheet that produces the entire gut tube and associated organs including the liver, pancreas and lungs. Murine explant studies demonstrate that Fibroblast Growth Factor (FGF) signaling from adjacent tissues is required to induce hepatic gene expression from isolated foregut endoderm. The requirement of FGF signaling during liver development is examined via small molecule inhibition during whole embryo culture. Results: Loss of FGF signaling prior to hepatic induction results in morphological defects and gene expression changes that are confined to the anterior liver bud. In contrast the posterior portion of the liver bud remains relatively unaffected. Because FGF is thought to act as a morphogen during endoderm organogenesis, the ventral pancreas was also examined after FGF inhibition. Although the size of the ventral pancreas is not affected, loss of FGF signaling results in a significantly higher density of ventral pancreas cells. Conclusions: The requirement for FGF-mediated induction of hepatic gene expression differs across the anterior-posterior axis of the developing liver bud. These results underscore the importance of studying tissue differentiation in the context of the whole embryo. Developmental Dynamics, 2014. © 2014 Wiley Periodicals, Inc.
    Developmental Dynamics 10/2014; · 2.67 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014