MRI and 1 H MRS of The Breast: Presence of a Choline Peak as Malignancy Marker is Related to k21 Value of the Tumor in Patients with Invasive Ductal Carcinoma

Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5488, USA.
The Breast Journal (Impact Factor: 1.43). 11/2008; 14(6):574-80. DOI: 10.1111/j.1524-4741.2008.00650.x
Source: PubMed

ABSTRACT To assess which specific morphologic features, enhancement patterns, or pharmacokinetic parameters on breast Magnetic Resonance Imaging (MRI) could predict a false-negative outcome of Proton MR Spectroscopy ((1)H MRS) exam in patients with invasive breast cancer. Sixteen patients with invasive ductal carcinoma of the breast were prospectively included and underwent both, contrast-enhanced breast MRI and (1)H MRS examination of the breast. The MR images were reviewed and the lesions morphologic features, enhancement patterns and pharmacokinetic parameters (k21-value) were scored according to the ACR BI-RADS-MRI lexicon criteria. For the in vivo MRS studies, each spectrum was evaluated for the presence of choline based on consensus reading. Breast MRI and (1)H MRS data were compared to histopathologic findings. In vivo (1)H MRS detected a choline peak in 14/16 (88%) cancers. A false-negative (1)H MRS study occurred in 2/16 (14%) cancer patients. K21 values differed between both groups: the 14 choline positive cancers had k21 values ranging from 0.01 to 0.20/second (mean 0.083/second), whereas the two choline-negative cancers showed k21 values of 0.03 and 0.05/second, respectively (mean 0.040/second). Also enhancement kinetics did differ between both groups; typically both cancers that were choline-negative showed a late phase plateau (100%), whereas this was only shown in 5/14 (36%) of the choline positive cases. There was no difference between both groups with regard to morphologic features on MRI. This study showed that false-negative (1)H MRS examinations do occur in breast cancer patients, and that the presence of a choline peak on (1)H MRS as malignancy marker is related to the k21 value of the invasive tumor being imaged.

Download full-text


Available from: Lara Stables, Aug 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of focal pathology by single-voxel magnetic resonance spectroscopy (MRS) is hampered by the impossibility to study tissue heterogeneity or compare the metabolite signals in breast lesion directly to those in unaffected tissue. Multivoxel MRS studies, while potentially allowing for truly quantitative tissue characterization, have up to now also been far from quantitative with, for example, the signal-to-noise ratio of the choline (Cho) signal serving as measure of tumor activity. Shown in this study is that in a standard clinical setting with a regular 1.5-T magnetic resonance scanner, it is possible to perform quantitative multivoxel MRS. With the use of literature values for the T1 and T2 relaxation times of Cho and water in fibroglandular breast tissue and tumors, one can determine the concentrations of Cho in different tumor compartments and surrounding tissues in two brief multivoxel MRS measurements. This opens excellent perspectives to quantitative diagnostic and follow-up studies of focal pathology such as lesions suspected of breast cancer.
    Magnetic Resonance Imaging 04/2010; 28(3):314-9. DOI:10.1016/j.mri.2009.11.004 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular imaging methods can noninvasively detect specific biological processes that are aberrant in cancer, including upregulated glycolytic metabolism, increased cellular proliferation and altered receptor expression. PET using the glucose analogue 18F-fluoro-2-deoxyglucose, which detects the increased glucose uptake that is a characteristic of tumor cells, has been widely used in the clinic to detect tumors and their responses to treatment; however, there are many new PET tracers being developed for a wide range of biological targets. Magnetic resonance spectroscopy (MRS), which can be used to detect cellular metabolites, can also provide prognostic information, particularly in brain, breast and prostate cancers. An emerging technique, which by hyperpolarizing 13C-labeled cell substrates dramatically enhances their sensitivity to detection, could further extend the use of MRS in molecular imaging in the clinic. Molecular diagnostics applied to serum samples or tumor samples obtained by biopsy, can measure changes at the individual cell level and the underlying changes in gene or protein expression. DNA microarrays enable high-throughput gene-expression profiling, while mass spectrometry can detect thousands of proteins that may be used in the future as biomarkers of cancer. Probing molecular changes will aid not only cancer diagnosis, but also provide tumor grading, based on gene-expression analysis and imaging measurements of cell proliferation and changes in metabolism; staging, based on imaging of metastatic spread and elevation of protein biomarkers; and the detection of therapeutic response, using serial molecular imaging measurements or monitoring of serum markers. The present article provides a summary of the molecular diagnostic methods that are currently being trialed in the clinic.
    Expert Review of Molecular Diagnostics 05/2010; 10(4):417-34. DOI:10.1586/erm.10.20 · 4.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and proton (1H) magnetic resonance spectroscopy (MRS) provide structural and biochemical information, including vascular volume, vascular permeability and tissue metabolism. In this study, we performed analysis of the enhancement characteristic from DCE-MRI and the biochemical information provided by two-dimensional (2D) Localized Correlated Spectroscopy (L-COSY) MRS to determine the sensitivity and specificity of using DCE-MRI alone compared to the combination with 2D MRS. The metabolite ratios from the 2D MRS spectra were analyzed using multivariate statistical analyses to determine a method capable of automatic separation of the patient cohort into malignant and benign lesions. A total of 24 lesions were studied with 21 diagnosed accurately using the enhancement characteristics alone resulting in sensitivity and specificity of 100% and 73%, respectively. Analysis of the 2D MRS data demonstrated a significant difference (p < 0.05) in 12 of 18 metabolite ratios analyzed for malignant compared to benign lesions. Previous research focused on utilizing the choline signal to noise ratio (SNR) as a marker for malignancy has been verified using 2D MRS in this study. Using Fisher's linear discriminant test using water (WAT)/olefinic fat diagonal (UFD), choline (CHO)/fat (FAT), CHO/UFD, and FAT/methyl fat (FMETD) as predictors the sensitivity and specificity increased to 92% and 100%, respectively. Using the Classification and Regression Tree (CART) statistical analysis the resulting sensitivity and specificity were 100% and 91%, respectively, with the most accurate predictor for differentiating malignant and benign determined to be FAT/FMETD. The cases within the study that presented a indeterminate diagnosis using DCE-MRI alone were able to be accurately diagnosed when the metabolic information from 2D MRS was incorporated. The results suggest improved breast cancer detection through the combination of morphological and enhancement information from DCE-MRI and metabolic information from 2D MRS.
    NMR in Biomedicine 10/2010; 23(8):922-30. DOI:10.1002/nbm.1511 · 3.56 Impact Factor
Show more