Article

Bioluminescent Indicators for Ca2+ Based on Split Renilla Luciferase Complementation in Living Cells

Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062, Japan.
Analytical Sciences (Impact Factor: 1.4). 02/2008; 24(11):1405-8. DOI: 10.2116/analsci.24.1405
Source: PubMed

ABSTRACT Genetically encoded bioluminescent indicators for intracellular Ca2+ are described here with CaM-M13 interaction-induced complementation of split Renilla luciferase. The Ca2+-induced interaction between CaM and M13 leads to complementation of the N- and C-terminal halves of split Renilla luciferase in living cells. This intramolecular interaction results in the spontaneous and simultaneous emission of bioluminescence split Renilla luciferase. This is how intracellular Ca2+ is illuminated with the intramolecular complementation of split Renilla luciferase. The Ca2+-dependent spontaneous and simultaneous emission of bioluminescence promises to reveal Ca2+ dynamics in living cells, and also in vivo using the present indicators.

0 Followers
 · 
158 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient bioluminescence resonance energy transfer (BRET) from a bioluminescent protein to a fluorescent protein with high fluorescent quantum yield has been utilized to enhance luminescence intensity, allowing single-cell imaging in near real time without external light illumination. We applied BRET to develop an autoluminescent Ca(2+) indicator, BRAC, which is composed of Ca(2+)-binding protein, calmodulin, and its target peptide, M13, sandwiched between a yellow fluorescent protein variant, Venus, and an enhanced Renilla luciferase, RLuc8. Adjusting the relative dipole orientation of the luminescent protein's chromophores improved the dynamic range of BRET signal change in BRAC up to 60%, which is the largest dynamic range among BRET-based indicators reported so far. Using BRAC, we demonstrated successful visualization of Ca(2+) dynamics at the single-cell level with temporal resolution at 1 Hz. Moreover, BRAC signals were acquired by ratiometric imaging capable of canceling out Ca(2+)-independent signal drifts due to change in cell shape, focus shift, etc. The brightness and large dynamic range of BRAC should facilitate high-sensitive Ca(2+) imaging not only in single live cells but also in small living subjects.
    PLoS ONE 04/2010; 5(4):e9935. DOI:10.1371/journal.pone.0009935 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efficient bioluminescence resonance energy transfer (BRET) from a bioluminescent protein to a fluorescent protein with high fluorescent quantum yield has been utilized to enhance luminescence intensity, allowing single-cell imaging in near real time without external light illumination. We have applied this strategy to develop an autoluminescent Ca2+ indicator, BRAC, which is composed of Ca2+-binding protein, calmodulin, and its target peptide, M13, sandwiched between a yellow fluorescent protein variant, Venus, and an enhanced Renilla luciferase, RLuc8. With this BRAC, we succeeded visualization of Ca2+ dynamics at the single-cell level with temporal resolution at 1 Hz. Moreover, BRAC signals were acquired by ratiometric imaging capable of canceling out Ca2+-independent signal drifts due to change in cell shape, focus shift, etc. Taking advantage of the bioluminescence imaging property that does not require external excitation light, BRAC might become a powerful tool applicable in conjunction with so-called optogenetic technology by which we can control cellular and protein function by light illumination.
    Proceedings of SPIE - The International Society for Optical Engineering 12/2011; DOI:10.1117/12.905065 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioluminescent systems are considered as potent reporter systems for bioanalysis since they have specific characteristics, such as relatively high quantum yields and photon emission over a wide range of colors from green to red. Biochemical events are mostly accomplished through large protein machines. These molecular complexes are built from a few to many proteins organized through their interactions. These protein-protein interactions are vital to facilitate the biological activity of cells. The split-luciferase complementation assay makes the study of two or more interacting proteins possible. In this technique, each of the two domains of luciferase is attached to each partner of two interacting proteins. On interaction of those proteins, luciferase fragments are placed close to each other and form a complemented luciferase, which produces a luminescent signal. Split luciferase is an effective tool for assaying biochemical metabolites, where a domain or an intact protein is inserted into an internally fragmented luciferase, resulting in ligand binding, which causes a change in the emitted signals. We review the various applications of this novel luminescent biosensor in studying protein-protein interactions and assaying metabolites involved in analytical biochemistry, cell communication and cell signaling, molecular biology, and the fate of the whole cell, and show that luciferase-based biosensors are powerful tools that can be applied for diagnostic and therapeutic purposes.
    Analytical and Bioanalytical Chemistry 07/2014; 406(23). DOI:10.1007/s00216-014-7980-8 · 3.58 Impact Factor