Article

Effect of a short- and long-term treatment with Ginkgo biloba extract on Amyloid Precursor Protein Levels in a transgenic mouse model relevant to Alzheimer's disease

Institute of Animal Nutrition and Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, 24098 Kiel, Germany.
Archives of Biochemistry and Biophysics (Impact Factor: 3.04). 11/2008; 481(2):177-82. DOI: 10.1016/j.abb.2008.10.032
Source: PubMed

ABSTRACT Several clinical trials have reported beneficial effects of the Ginkgo biloba extract EGb761 in the prevention and therapy of cognitive disorders including Alzheimer's disease (AD). The aim of the present long-term feeding trial was to study the impact of dietary EGb761 on Amyloid precursor protein (APP) metabolism in mice transgenic for human APP (Tg2576). Tg2576 mice were fed diets with and without EGb761 (300 mg/kg diet) for 1 and 16 months, respectively. Long-term treatment (16 months) with EGb761 significantly lowered human APP protein levels by approximately 50% as compared to controls in the cortex but not in the hippocampus. However, APP levels were not affected by EGb761 in young mice. Current data indicate that APP seems to be an important molecular target of EGb761 in relation to the duration of the Ginkgo biloba treatment and/or the age of the animals. Potential neuroprotective properties of EGb761 may be, at least partly, related to its APP lowering activity.

Full-text

Available from: Gerald Rimbach, Jan 30, 2015
0 Followers
 · 
52 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a neurodegenerative disease characterized by extracellular deposits of amyloid β peptide (Aβ) and microglia-dominated neuroinflammation. The therapeutic options for AD are currently limited. In this study, we investigated the antiinflammatory effects and the underlying molecular mechanisms of Ginkgo biloba extract EGb 761 when administered to TgCRND8 AD mice, which overexpress human Alzheimer's amyloid precursor protein (APP) specifically in neurons. We gave APP-transgenic mice EGb 761 as a dietary supplement for 2 or 5months. Plasma concentrations of EGb 761 components in mice were in the same range as such concentrations in humans taking EGb 761 at the recommended dose (240mg daily). Treatment with EGb 761 for 5months significantly improved the cognitive function of the mice as measured by the Barnes Maze test. It also attenuated the loss of synaptic structure proteins, such as PSD-95, Munc18-1, and SNAP25. Treatment with EGb 761 for 5months inhibited microglial inflammatory activation in the brain. The effects of treatment with EGb 761 for 2months were weak and not statistically significant. Moreover, EGb 761 activated autophagy in microglia. Treatment with EGb 761 decreased Aβ-induced microglial secretion of TNF-α and IL-1β and activation of caspase-1, both of which were abolished by the inhibition of autophagy. Treatment with EGb 761 also reduced the concentrations of NLRP3 protein that colocalized with LC3-positive autophagosomes or autolysosomes in microglia. Additionally, long-term treatment with EGb 761 may reduce cerebral Aβ pathology by inhibiting β-secretase activity and Aβ aggregation. Therefore, long-term treatment with G.biloba extract EGb 761, a clinically available and well-tolerated herbal medication, ameliorates AD pathology by antiinflammatory and Aβ-directed mechanisms. Copyright © 2015. Published by Elsevier Inc.
    Brain Behavior and Immunity 01/2015; 46. DOI:10.1016/j.bbi.2015.01.011 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by deposition of amyloid beta, neurofibrillary tangles, astrogliosis and microgliosis, leading to neuronal dysfunction and loss in the brain. Bio- and histochemical evidence suggests a pivotal role of central and peripheral inflammation in its aetiopathology, linked to the production of free radicals. Numerous epidemiological studies support that the long-term use of non-steroidal anti-inflammatory drugs is preventive against AD, but these medications do not slow down the progression of the disease in already diagnosed patients. There are a number of studies focusing on traditional herbal medicines and small molecules (usually plant secondary metabolites) as potential anti-inflammatory drugs, particulary in respect to cytokine suppression. For instance, ω-3 polyunsaturated fatty acids and a number of polyphenolic phytochemicals have been shown to be effective against inflammation in animal and cell models. Some of these plant secondary metabolites have also been shown to possess antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects. This review will overview the the effects of catechins/proanthocyanidins from green tea, curcumin from turmeric, extracts enriched in bacosides from Brahmi, Ginkgo flavone glycosides, and ω-3 polyunsaturated fatty acids not only counteract one pathophysiological aspect of AD in numerous in vitro and in vivo studies of models of AD, but also ameliorate several of the above mentioned pathologies. The evidence suggests that increased consumption of these compounds might lead to a safe strategy to delay the onset of AD. The continuing investigation of the potential of these substances is necessary as they are promising to yield a possible remedy for this pervasive disease.
    CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) 09/2014; DOI:10.2174/1871527313666140917110635 · 2.70 Impact Factor