Generations of sequencing technologies.

Department of Gene Technology, Royal Institute of Technology (KTH), AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden.
Genomics (Impact Factor: 2.79). 12/2008; 93(2):105-11. DOI: 10.1016/j.ygeno.2008.10.003
Source: PubMed

ABSTRACT Advancements in the field of DNA sequencing are changing the scientific horizon and promising an era of personalized medicine for elevated human health. Although platforms are improving at the rate of Moore's Law, thereby reducing the sequencing costs by a factor of two or three each year, we find ourselves at a point in history where individual genomes are starting to appear but where the cost is still too high for routine sequencing of whole genomes. These needs will be met by miniaturized and parallelized platforms that allow a lower sample and template consumption thereby increasing speed and reducing costs. Current massively parallel, state-of-the-art systems are providing significantly improved throughput over Sanger systems and future single-molecule approaches will continue the exponential improvements in the field.

1 Bookmark
  • Source
    Print-ready version 03/2015; , ISBN: 978-82-326-0741-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background De novo transcriptome assembly of short transcribed fragments (transfrags) produced from sequencing-by-synthesis technologies often results in redundant datasets with differing levels of unassembled, partially assembled or mis-assembled transcripts. Post-assembly processing intended to reduce redundancy typically involves reassembly or clustering of assembled sequences. However, these approaches are mostly based on common word heuristics and often create clusters of biologically unrelated sequences, resulting in loss of unique transfrags annotations and propagation of mis-assemblies. Results Here, we propose a structured framework that consists of a few steps in pipeline architecture for Inferring Functionally Relevant Assembly-derived Transcripts (IFRAT). IFRAT combines 1) removal of identical subsequences, 2) error tolerant CDS prediction, 3) identification of coding potential, and 4) complements BLAST with a multiple domain architecture annotation that reduces non-specific domain annotation. We demonstrate that independent of the assembler, IFRAT selects bona fide transfrags (with CDS and coding potential) from the transcriptome assembly of a model organism without relying on post-assembly clustering or reassembly. The robustness of IFRAT is inferred on RNA-Seq data of Neurospora crassa assembled using de Bruijn graph-based assemblers, in single (Trinity and Oases-25) and multiple (Oases-Merge and additive or pooled) k-mer modes. Single k-mer assemblies contained fewer transfrags compared to the multiple k-mer assemblies. However, Trinity identified a comparable number of predicted coding sequence and gene loci to Oases pooled assembly. IFRAT selects bona fide transfrags representing over 94% of cumulative BLAST-derived functional annotations of the unfiltered assemblies. Between 4-6% are lost when orphan transfrags are excluded and this represents only a tiny fraction of annotation derived from functional transference by sequence similarity. The median length of bona fide transfrags ranged from 1.5kb (Trinity) to 2kb (Oases), which is consistent with the average coding sequence length in fungi. The fraction of transfrags that could be associated with gene ontology terms ranged from 33-50%, which is also high for domain based annotation. We showed that unselected transfrags were mostly truncated and represent sequences from intronic, untranslated (5′ and 3′) regions and non-coding gene loci. Conclusions IFRAT simplifies post-assembly processing providing a reference transcriptome enriched with functionally relevant assembly-derived transcripts for non-model organism.
    BMC Bioinformatics 02/2015; 16(52). DOI:10.1186/s12859-015-0492-5 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequencing human immunodeficiency virus type 1 (HIV-1) for drug resistance mutations and viral tropism is crucial to the current HIV/AIDS personalized treatment approach. This thesis addresses particular areas where clinical utility data is lacking: First, current methods were validated as clinically useful with plasma viral RNA primarily from patients infected with subtype B HIV-1, the dominant strain in developed countries; however, globally most patients are infected with non-subtype B variants. Secondly, there is insufficient data available with respect to the newest classes of antiretroviral drugs (i.e. CCR5-antagonist and integrase inhibitors). Finally, modern antiretroviral therapies often lead to “undetectable plasma viremia” (i.e. successful ongoing treatment) which make plasma-based genotypic testing impossible; the utility of examining alternative sample types is being actively explored. The overall objective of this thesis is to evaluate genotypic assessment of HIV-1 using standard and “second generation” DNA sequencing methods for guiding clinical decisions in nonconventional sample types. Specifically, it is hypothesized that genotypic assessment of subtype A, C and D HIV-1, plasma viral RNA collected pre-therapy, and viral DNA archived in blood cells are useful predictors of in vitro phenotype and/or clinical outcomes. Chapter 1 and 2 examine the clinical utility of current genotyping approaches when applied to non-subtype-B HIV-1. Results suggest that (1) transmitted genotypic drug resistance predicted small but negative treatment outcomes in non-B infections, and (2) current genotypic tools for predicting viral tropism had poor sensitivities and/or specificities in subtypes A and D, but not C HIV-1. Chapter 3 and 4 examine the clinical utility of current genotypic approaches coupled with alternative sample types. Results suggest that (3) pre-therapy plasma sample tropism results predicted post-therapy post-suppression tropism in 90% of subjects, and (4) viral DNA archived in blood and plasma RNA had similar integrase inhibitor-associated mutations, but mutations in DNA were detected substantially later and were substantially less prevalent. In conclusion, genotypic assessment of HIV-1 using nonconventional sample types is clinically relevant, but has specific limitations. Further methodological research and clinical validation studies are needed to ensure proper interpretation of results.
    01/2015, Degree: PhD, Supervisor: Dr. Richard Harrigan


1 Download
Available from