Article

Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray.

Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA.
BMC Genomics (Impact Factor: 4.4). 12/2008; 9:526. DOI: 10.1186/1471-2164-9-526
Source: PubMed

ABSTRACT Salmonella enterica serovar Enteritidis (SE) is one of the most common food-borne pathogens that cause human salmonellosis and usually results from the consumption of contaminated poultry products. The mechanism of SE resistance in chickens remains largely unknown. Previously, heterophils isolated from broilers with different genetic backgrounds (SE-resistant [line A] and -susceptible [line B]) have been shown to be important in defending against SE infections. To dissect the interplay between heterophils and SE infection, we utilized large-scale gene expression profiling.
The results showed more differentially expressed genes were found between different lines than between infection (SE-treated) and non-infection (control) samples within line. However, the numbers of expressed immune-related genes between these two comparisons were dramatically different. More genes related to immune function were down-regulated in line B than line A. The analysis of the immune-related genes indicated that SE infection induced a stronger, up-regulated gene expression of line heterophils A than line B, and these genes include several components in the Toll-like receptor (TLR) signaling pathway, and genes involved in T-helper cell activation.
We found: (1) A divergent expression pattern of immune-related genes between lines of different genetic backgrounds. The higher expression of immune-related genes might be more beneficial to enhance host immunity in the resistant line; (2) a similar TLR regulatory network might exist in both lines, where a possible MyD88-independent pathway may participate in the regulation of host innate immunity; (3) the genes exclusively differentially expressed in line A or line B with SE infection provided strong candidates for further investigating SE resistance and susceptibility. These findings have laid the foundation for future studies of TLR pathway regulation and cellular modulation of SE infection in chickens.

1 Bookmark
 · 
181 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which is responsible for morbidity and mortality in chickens. Gene expression patterns have previously been demonstrated to differ between chicken populations that are resistant vs. susceptible to bacterial infection, but little is currently known about gene expression response to APEC. Increased understanding of gene expression patterns associated with resistance will facilitate genetic selection to increase resistance to APEC. Male broiler chicks were vaccinated at 2 weeks of age and challenged with APEC at 4 weeks of age. Peripheral blood leukocytes were collected at 1 and 5 day post-infection. Lesions on the liver, pericardium, and air sacs were used to assign a mild or severe pathology status to non-vaccinated, challenged chicks. Ten treatment groups were therefore generated with a priori factors of vaccination, challenge, day post-infection, and the a posteriori factor of pathology status. Global transcriptomic response was evaluated using the Agilent 44K chicken microarray. APEC infection resulted in more up-regulation than down-regulation of differentially expressed genes. Immune response and metabolic processes were enriched with differentially expressed genes. Although vaccination significantly reduced lesions in challenged bird, there was no detectable effect of vaccination on gene expression. This study investigated the transcriptomic differences in host responses associated with mild vs. severe pathology, in addition to the effects of vaccination and challenge, thus revealing genes and networks associated with response to APEC and providing a foundation for future studies on, and genetic selection for, genetic resistance to APEC.
    Results in Immunology. 01/2012; 2:44–53.
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the recent progress within the field of processing nano structures, there is an increasing interest in coupling light into such structures both for characterization of optical properties and new optical components. In this work we propose the use of a sub-micrometer planar waveguide for probing the reflection of light against a nano structure. The planar waveguide is based on a silicon nitride core layer, surrounded by a silica cladding region. In our design we utilize this waveguide to couple light into a nano-structure.
    01/2003;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of chicken with Salmonella may lead to a carrier-state characterized by the persistence of bacteria in the ceca for a long period of time and result in their excretion in feces This excretion is the source of contamination of their congeners and food During infection, enterocytes are the primary target cells for Salmonella, the producers of soluble factors which launch immune response and cells which are reciprocally responsive to surrounding immune cells This study used microarrays to compare the gene expression profile during carrier-state of enterocytes purified from infected and control chicks which are either resistant or susceptible to Salmonella Enteritidis carrier-state In total, we identified 271 genes significantly differentially expressed with an absolute fold change greater than 15 A global analysis determined interaction networks between differentially regulated genes Using an a priori approach, our analyses focused on differentially expressed genes which were transcriptionally linked to cytokines playing a major role in the fate of the immune response The expression of genes transcriptionally linked to type I interferon and TGF-β was down-regulated in infected chicks from both lines Gene expression linked to the Th1 axis suggests the latter is inhibited in both lines Finally, the expression of genes linked to IL-4, IL-5 and IL-13 indicates that susceptibility to carrier-state could be associated with a Th2 bias Overall, these results highlight that the response to Salmonella during the acute phase and carrier-state is different and that enterocytes play a central role in this response
    Veterinary Immunology and Immunopathology 01/2014; · 1.88 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Jun 2, 2014