Article

Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray.

Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA.
BMC Genomics (Impact Factor: 4.4). 12/2008; 9:526. DOI: 10.1186/1471-2164-9-526
Source: PubMed

ABSTRACT Salmonella enterica serovar Enteritidis (SE) is one of the most common food-borne pathogens that cause human salmonellosis and usually results from the consumption of contaminated poultry products. The mechanism of SE resistance in chickens remains largely unknown. Previously, heterophils isolated from broilers with different genetic backgrounds (SE-resistant [line A] and -susceptible [line B]) have been shown to be important in defending against SE infections. To dissect the interplay between heterophils and SE infection, we utilized large-scale gene expression profiling.
The results showed more differentially expressed genes were found between different lines than between infection (SE-treated) and non-infection (control) samples within line. However, the numbers of expressed immune-related genes between these two comparisons were dramatically different. More genes related to immune function were down-regulated in line B than line A. The analysis of the immune-related genes indicated that SE infection induced a stronger, up-regulated gene expression of line heterophils A than line B, and these genes include several components in the Toll-like receptor (TLR) signaling pathway, and genes involved in T-helper cell activation.
We found: (1) A divergent expression pattern of immune-related genes between lines of different genetic backgrounds. The higher expression of immune-related genes might be more beneficial to enhance host immunity in the resistant line; (2) a similar TLR regulatory network might exist in both lines, where a possible MyD88-independent pathway may participate in the regulation of host innate immunity; (3) the genes exclusively differentially expressed in line A or line B with SE infection provided strong candidates for further investigating SE resistance and susceptibility. These findings have laid the foundation for future studies of TLR pathway regulation and cellular modulation of SE infection in chickens.

1 Bookmark
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Campylobacter jejuni colonises the caecum of more than 90% of commercial chickens. Even though colonisation is asymptomatic, we hypothesised that it is mediated by activation of several biological pathways. We therefore used chicken-specific 20K oligonucleotide microarrays to examine global gene expression in C. jejuni-challenged birds. Microarray results demonstrate small but significant fold-changes in expression of 270 genes 20 h post-challenge, corresponding to a wide range of biological processes including cell growth, nutrient metabolism and immunological activity. Expression of NOX1 (2.3-fold) and VCAM1 (1.5-fold) were significantly increased in colonised birds (P<0.05), indicating oxidative burst and endothelial cell activation, respectively. Microarray results, supplemented by qRT-PCR analyses demonstrated increased TOPK (1.9-fold), IL17 (3.6-fold), IL21 (2.1-fold), IL7R (4-fold) and CTLA4 (2.5-fold) gene expression (P<0.05), which was suggestive of T cell mediated activity. Combined these results suggest that C. jejuni has nominal effects on global caecal gene expression in the chicken but significant changes detected are suggestive of a protective intestinal T cell response.
    Veterinary Immunology and Immunopathology 07/2011; 142(1-2):64-71. · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic line and diet affect chicken heterophil activity and gene expression, and the combination of these factors can enhance disease resistance. This study evaluated the effects of immune modulating diets on heterophil/lymphocyte (H/L) ratio and heterophil chemokine expression in distinct genetic lines. Fayoumi and Leghorn chickens were fed a basal diet or immune modulating diets enhanced with β-glucans, ascorbic acid, or corticosterone. H/L ratios and heterophil gene expression in response to in vitro stimulation with Salmonella enteritidis (SE) were evaluated on days 1, 3, 7, and 21 of diet treatment. The stress-mimicking corticosterone diet influenced H/L ratio in the Leghorn line, but not the Fayoumi line, suggesting resistance to stress-induced immunosuppression in the Fayoumi line. Leghorn line H/L ratios were increased on days 1 and 3 of corticosterone diet treatment, but not days 7 or 21. Expression of CXCLi2 by SE stimulated heterophils was higher in the Leghorn line, suggesting that Leghorns rely more heavily on inflammatory response than do Fayoumis. Corticosterone diet was associated with reduced CXCLi2 expression in heterophils from both lines. Dietary β-glucan or ascorbic acid did not affect H/L ratio or CXCLi2 expression, suggesting that benefits of these immunomodulators may not be evident in healthy birds.
    Veterinary Immunology and Immunopathology 01/2011; 140(3-4):323-8. · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of chicken with Salmonella may lead to a carrier-state characterized by the persistence of bacteria in the ceca for a long period of time and result in their excretion in feces This excretion is the source of contamination of their congeners and food During infection, enterocytes are the primary target cells for Salmonella, the producers of soluble factors which launch immune response and cells which are reciprocally responsive to surrounding immune cells This study used microarrays to compare the gene expression profile during carrier-state of enterocytes purified from infected and control chicks which are either resistant or susceptible to Salmonella Enteritidis carrier-state In total, we identified 271 genes significantly differentially expressed with an absolute fold change greater than 15 A global analysis determined interaction networks between differentially regulated genes Using an a priori approach, our analyses focused on differentially expressed genes which were transcriptionally linked to cytokines playing a major role in the fate of the immune response The expression of genes transcriptionally linked to type I interferon and TGF-β was down-regulated in infected chicks from both lines Gene expression linked to the Th1 axis suggests the latter is inhibited in both lines Finally, the expression of genes linked to IL-4, IL-5 and IL-13 indicates that susceptibility to carrier-state could be associated with a Th2 bias Overall, these results highlight that the response to Salmonella during the acute phase and carrier-state is different and that enterocytes play a central role in this response
    Veterinary Immunology and Immunopathology 01/2014; · 1.88 Impact Factor

Full-text (2 Sources)

View
7 Downloads
Available from
Jun 2, 2014