Article

Preferences of transmembrane helices for cooperative amplification of G(alpha)s and G (alpha)q signaling of the thyrotropin receptor.

III. Medical Department, University of Leipzig, Germany.
Cellular and Molecular Life Sciences CMLS (Impact Factor: 5.62). 12/2008; 65(24):4028-38. DOI: 10.1007/s00018-008-8530-3
Source: PubMed

ABSTRACT The majority of constitutively activating mutations (CAMs) of the thyroid-stimulating hormone receptor display a partially activated receptor. Thus, full receptor activation requires a multiplex activation process. To define impacts of different transmembrane helices (TMHs) on cooperative signal transduction, we combined single CAMs in particular TMHs to double mutations and measured second messenger accumulation of the G(alpha)s and the G(alpha)q pathway. We observed a synergistic increase for basal activity of the G(alpha)s pathway, for all characterized double mutants except for two combinations. Each double mutation, containing CAMs in TMH2, 6 and 7 showed the highest constitutive activities, suggesting that these helices contribute most to G(alpha)s-mediated signaling. No single CAM revealed constitutive activity for the G(alpha)q pathway. The double mutations with CAMs from TMH1, 2, 3 and 6 also exhibited increase for basal G(alpha)q signaling. Our results suggest that TMH2, 6, 7 show selective preferences towards G(alpha)s signaling, and TMH1, 2, 3, 6 for G(alpha)q signaling.

1 Bookmark
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hot thyroid nodules (HTNs) in children are rare. Their reported malignancy rate is higher than in adults. However molecular data are rare. We present clinical and molecular data for 33 consecutive (29 benign and 4 malignant) HTNs. 17/29 benign HTNs (59%) harbored somatic TSHR mutations. The most commonly observed mutation was M453T (in 8/29 samples). T632I and D633Y mutations were each detected twice. All other TSHR mutations were each found in one sample, including the new A538T mutation. One NRAS mutation was detected in a benign HTN with a M453T mutation. A PAX8/PPARG rearrangement was found in one malignant HTN. A T632I mutation was detected in one hot papillary thyroid carcinoma. The percentage of TSHR mutation positive HTNs in children and adolescents is within the range observed in adults. Contrary to adults, the M453T mutation is the predominant TSHR mutation in HTNs of children and adolescents. The increased malignancy rate of HTNs of children does not appear to be associated with RAS, BRAF, PAX8/PPARG and RET/PTC mutations.
    Molecular and Cellular Endocrinology 06/2014; · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The resistance to thyrotropin (TSH) action is the disease associated with molecular defects hampering the adequate transmission of TSH stimulatory signal into thyroid cells. The defect may in principle affect every step along the cascade of events following the binding of TSH to its receptor (TSHR) on thyroid cell membranes. After the description of the first family affected with loss-of-function (LOF) TSHR mutations in 1995, there is now evidence that TSH resistance is a disease with a broad range of expressivity going from severe congenital hypothyroidism (CH) with thyroid hypoplasia to mild hyperthyrotropinemia (hyperTSH) associated with an apparent euthyroid state. More severe forms occur in patients with disrupting biallelic TSHR mutations and follow a recessive pattern of inheritance. Differential diagnosis in these cases includes the exclusion of other causes of thyroid dysgenesis, such as mutations in thyroid transcription factors. More mild forms may instead occur in patients with monoallelic TSHR defects following a dominant mode of inheritance. In these cases we described the dominant negative effect exerted by some LOF mutants on the activity of the wild-type TSHR. Differential diagnosis involves the exclusion of mild hypothyroidism in autoimmune thyroid disease or pseudohypoparathyroidism associated with genetic or epigenetic defects at the GNAS locus. This review will focus on the prevalence of TSHR mutations, on the molecular mechanisms leading to TSH resistance and on the variable clinical expression of this disease.
    Molecular and Cellular Endocrinology 06/2010; 322(1-2):72-82. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The thyrotropin or thyroid stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors (GPHRs), a sub-family of family A G-protein coupled receptors (GPCRs). The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G-protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations and potential extra-thyroidal receptor activity are also considered, as these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological and pharmacological perspectives. Directions for future research are discussed.
    Endocrine reviews 05/2013; · 19.76 Impact Factor