Aldosterone activates NF-kappaB in the collecting duct.

Foundation for Medical Research, University of Geneva, 64 Avenue de la Roseraie, CH-1211, Geneva 4, Switzerland.
Journal of the American Society of Nephrology (Impact Factor: 8.99). 12/2008; 20(1):131-44. DOI: 10.1681/ASN.2008020232
Source: PubMed

ABSTRACT Besides its classical effects on salt homeostasis in renal epithelial cells, aldosterone promotes inflammation and fibrosis and modulates cell proliferation. The proinflammatory transcription factor NF-kappaB has been implicated in cell proliferation, apoptosis, and regulation of transepithelial sodium transport. The effect of aldosterone on the NF-kappaB pathway in principal cells of the cortical collecting duct, a major physiologic target of aldosterone, is unknown. Here, in both cultured cells and freshly isolated rat cortical collecting duct, aldosterone activated the canonical NF-kappaB signaling pathway, leading to increased expression of several NF-kappaB-targeted genes (IkappaBalpha, plasminogen activator inhibitor 1, monocyte chemoattractant protein 1, IL-1beta, and IL-6). Small interfering RNA-mediated knockdown of the serum and glucocorticoid-inducible kinase SGK1, a gene induced early in the response to aldosterone, but not pharmacologic inhibition of extracellular signal-regulated kinase and p38 kinase, attenuated aldosterone-induced NF-kappaB activation. Pharmacologic antagonism or knockdown of the mineralocorticoid receptor prevented aldosterone-induced NF-kappaB activity. In addition, activation of the glucocorticoid receptor inhibited the transactivation of NF-kappaB by aldosterone. In agreement with these in vitro findings, spironolactone prevented NF-kappaB-induced transcriptional activation observed in cortical collecting ducts of salt-restricted rats. In summary, aldosterone activates the canonical NF-kappaB pathway in principal cells of the cortical collecting duct by activating the mineralocorticoid receptor and by inducing SGK1.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Screening female rat distal colon preparations for aldosterone-induced genes identified the Hsp90-binding immunophilin FKBP51 as a major aldosterone-induced mRNA and protein. Limited induction of FKBP51 was observed also in other aldosterone-responsive tissues such as kidney, medulla and heart. Ex vivo measurements in colonic tissue have characterized time course, dose response and receptor specificity of the induction of FKBP51. FKBP51 mRNA and protein were strongly up regulated by physiological concentrations of aldosterone in a late (greater than 2.5h) response to the hormone. Maximal increase in FKBP51 mRNA requires aldosterone concentrations that are higher than those needed to fully occupy the mineralocorticoid receptor (MR). Yet, the response is fully inhibited by the MR antagonist spironolactone and not inhibited and even stimulated by the glucocorticoid receptor (GR) antagonist RU486. These and related findings cannot be explained by a simple activation and dimerization of either MR or GR but are in agreement with response mediated by an MR-GR heterodimer. Overexpression or silencing FKBP51 in the kidney collecting duct cell line M1 had little or no effect on the aldosterone-induced increase in transepithelial Na(+) transport.
    The Journal of steroid biochemistry and molecular biology 10/2013; · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A goal for scientists studying septic acute kidney injury (AKI) should be to formulate a conceptual model of disease that is able to coherently reconcile the molecular and inflammatory consequences of sepsis with impaired epithelial tubular function, diminished glomerular filtration rate (GFR) and ultimately kidney failure. Recent evidence has shed light on how sepsis modulates the tubular regulation of ion, glucose, urea and water transport and acid-base homeostasis in the kidney. The present review summarizes recent discoveries on changes in epithelial transport under septic and endotoxemic conditions as well as the mechanisms that link inflammation with impaired tubular membrane transport. This paper also proposes that the tubular dysfunction that is mediated by inflammation in sepsis ultimately leads to increased sodium and chloride delivery to the distal tubule and macula densa, contributing to tubuloglomerular feedback and impaired GFR. We feel that this conceptual model resolves many of the physiologic and clinical paradoxes that septic AKI presents to practicing researchers and clinicians.
    Nephrology Dialysis Transplantation 12/2013; · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aldosterone-salt treatment induces not only hypertension but also extensive inflammation that contributes to fibrosis in the rat kidney. However, the mechanism underlying aldosterone-salt-induced renal inflammation remains unclear. Pyroptosis has recently been identified as a new type of cell death that is accompanied by the activation of inflammatory cytokines. We hypothesized that aldosterone-salt treatment could induce inflammation through pyroptosis and that mizoribine, an effective immunosuppressant, would ameliorate the renal inflammation that would otherwise cause renal fibrosis. Ten days after recovery from left uninephrectomy, rats were given drinking water with 1% sodium chloride. The animals were divided into three groups (n = 7 per group): (1) vehicle infusion group, (2) aldosterone infusion group, or (3) aldosterone infusion plus oral mizoribine group. Aldosterone-salt treatment increased the expression of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 and caspase-1, and also increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. However, the oral administration of mizoribine attenuated these alterations. Furthermore, mizoribine inhibited hypertension and renal fibrosis, and also attenuated the aldosterone-induced expression of serum/glucocorticoid-regulated kinase and α epithelial sodium channel. These results suggest that caspase-1 activation plays an important role in the development of inflammation induced by aldosterone-salt treatment and that it functions as an anti-inflammatory strategy that protects against renal injury and hypertension.
    PLoS ONE 01/2014; 9(4):e93513. · 3.73 Impact Factor


Available from
May 22, 2014