Structural variation in Xq28: MECP2 duplications in 1% of patients with unexplained XLMR and in 2% of male patients with severe encephalopathy.

Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
European journal of human genetics: EJHG (Impact Factor: 4.23). 12/2008; 17(4):444-53. DOI: 10.1038/ejhg.2008.208
Source: PubMed

ABSTRACT Duplications in Xq28 involving MECP2 have been described in patients with severe mental retardation, infantile hypotonia, progressive spasticity, and recurrent infections. However, it is not yet clear to what extent these and accompanying symptoms may vary. In addition, the frequency of Xq28 duplications including MECP2 has yet to be determined in patients with unexplained X-linked mental retardation and (fe)males with severe encephalopathy. In this study, we used multiplex ligation-dependent probe amplification to screen Xq28 including MECP2 for deletions and duplications in these patient cohorts. In the group of 283 patients with X-linked mental retardation, we identified three Xq28 duplications including MECP2, which suggests that approximately 1% of unexplained X-linked mental retardation may be caused by MECP2 duplications. In addition, we found three additional MECP2 duplications in 134 male patients with mental retardation and severe, mostly progressive, neurological symptoms, indicating that the mutation frequency could be as high as 2% in this group of patients. In 329 female patients, no Xq28 duplications were detected. In total, we assessed 13 male patients with a MECP2 duplication from six unrelated families. Moderate to severe mental retardation and childhood hypotonia was noted in all patients. The majority of the patients also presented with absent speech, seizures, and progressive spasticity as well as ataxia or an ataxic gait and cerebral atrophy, two previously unreported symptoms. We propose to implement DNA copy number testing for MECP2 in the current diagnostic testing in all males with moderate to severe mental retardation accompanied by (progressive) neurological symptoms.


Available from: Martine Raynaud, Jun 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rett syndrome is an X‐linked neurodevelopmental disorder that manifests in early childhood with developmental stagnation, and loss of spoken language and hand use, with the development of distinctive hand stereotypies, severe cognitive impairment, and autistic features. About 60% of patients have epilepsy. Seizure onset before the age of 3 years is unlikely, and onset after age 20 is rare. Diagnosis of Rett syndrome is based on key clinical elements that identify “typical” Rett syndrome but also “variant” or “atypical” forms. Diagnostic criteria have been modified only slightly over time, even after discovering that MECP2 gene alterations are present in >90% of patients with typical Rett syndrome but only in 50–70% of atypical cases. Over the last several years, intragenic or genomic alterations of the CDKL5 and FOXG1 genes have been associated with severe cognitive impairment, early onset epilepsy and, often, dyskinetic movement disorders, which have variably been defined as Rett variants. It is now clearly emerging that epilepsy has distinctive characteristics in typical Rett syndrome and in the different syndromes caused by CDKL5 and FOXG1 gene alterations. The progressive parting of CDKL5‐ and FOXG1‐gene–related encephalopathies from the core Rett syndrome is reflected by the effort to produce clearer diagnostic criteria for typical and atypical Rett syndrome. Efforts to characterize the molecular pathology underlying these developmental encephalopathies are pointing to abnormalities of telencephalic development, neuronal morphogenesis, maturation and maintenance, and dendritic arborization.
    Epilepsia 01/2012; 53(12). DOI:10.1111/j.1528-1167.2012.03656.x · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Memory formation has been shown recently to be dependent on energy status in Drosophila. A well-established energy sensor is the insulin signaling (InS) pathway. Previous studies in various animal models including human have revealed the role of insulin levels in short-term memory but its role in long-term memory remains less clear. We therefore investigated genetically the spatial and temporal role of InS using the olfactory learning and long-term memory model in Drosophila. We found that InS is involved in both learning and memory. InS in the mushroom body is required for learning and long-term memory whereas long-term memory specifically is impaired after InS signaling disruption in the ellipsoid body, where it regulates the level of p70s6k, a downstream target of InS and a marker of protein synthesis. Finally, we show also that InS is acutely required for long-term memory formation in adult flies.
    Frontiers in Neural Circuits 03/2015; 9. DOI:10.3389/fncir.2015.00008 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MECP2 duplication results in a well-recognised syndrome in 100% of affected male children; this syndrome is characterised by severe neurodevelopmental disabilities and recurrent infections. However, no sonographic findings have been reported for affected foetuses, and prenatal molecular diagnosis has not been possible for this disease due to lack of prenatal clinical presentation. In this study, we identified a small duplication comprising the MECP2 and L1CAM genes in the Xq28 region in a patient from a family with severe X-linked mental retardation and in a prenatal foetus with brain structural abnormalities. Using high-resolution chromosome microarray analysis (CMA) to screen 108 foetuses with congenital structural abnormalities, we identified additional three foetuses with the MECP2 duplication. Our study indicates that ventriculomegaly, hydrocephalus, agenesis of the corpus callosum, choroid plexus cysts, foetal growth restriction and hydronephrosis might be common ultrasound findings in prenatal foetuses with the MECP2 duplication and provides the first set of prenatal cases with MECP2 duplication, the ultrasonographic phenotype described in these patients will help to recognise the foetuses with possible MECP2 duplication and prompt the appropriate molecular testing.
    Gene 06/2014; 546(2). DOI:10.1016/j.gene.2014.06.012 · 2.08 Impact Factor