A novel matrix metalloproteinase 2 (MMP2) terminal hemopexin domain mutation in a family with multicentric osteolysis with nodulosis and arthritis with cardiac defects.

Department of Pediatrics, Division of Genetics,Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
European journal of human genetics: EJHG (Impact Factor: 3.56). 12/2008; 17(5):565-72. DOI: 10.1038/ejhg.2008.204
Source: PubMed

ABSTRACT Multicentric osteolysis with nodulosis and arthropathy (MONA, NAO (OMIM no. 605156)) is an autosomal recessive member of the 'vanishing bone' syndromes and is notable for the extent of carpal and tarsal osteolysis and interphalangeal joint erosions, facial dysmorphia, and the presence of fibrocollagenous nodules. This rare disorder has been described previously in Saudi Arabian and Indian families. We now report on the first Turkish family with MONA, further confirming the panethnic nature of this disease. Strikingly, and in addition to the previously noted skeletal and joint features, affected members of this family also had congenital heart defects. Molecular analysis identified a novel MMP2 inactivating mutation that deletes the terminal hemopexin domains and thus confirmed the diagnosis of MONA. On the basis of these findings, we suggest that cardiac defects may also represent a component of this syndrome and thus a physiologically relevant target of MMP-2 activity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The 'vanishing bone' syndrome multicentric osteolysis with nodulosis and arthropathy (MONA) is a rare chronic skeleton disorder caused by matrix metalloproteinase 2 (MMP2) deficiency, mimicking erosive polyarticular juvenile idiopathic arthritis. MONA is characterised by facial dysmorphism, subcutaneous fibrocollagenous nodules, carpal and tarsal osteolysis and interphalangeal joint erosions. We present the case of a 5-year-old boy with double outlet right ventricle, ventricular septal defect, coarctation of the aorta and MONA. Previously, a total of 24 cases of MONA have been reported of which six also had congenital cardiac malformations. Despite treatment attempts of our patient with methotrexate, eternacept and prednisolone, serial X-ray studies documented continuous severe bone degeneration. Conclusion: The case documents the natural history of MONA and establishes a link between MMP2 deficiency and heart development, and given the recurring cardiac association, we suggest that all MONA patients be examined for possible cardiac defects.
    European Journal of Pediatrics 07/2013; 172(12). DOI:10.1007/s00431-013-2102-8 · 1.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone-forming cells originate from distinct embryological layers, mesoderm (axial and appendicular bones) and ectoderm (precursor of neural crest cells, which mainly form facial bones). These cells will develop bones by two principal mechanisms: intramembranous and endochondral ossification. In both cases, condensation of multipotent mesenchymal cells occurs, at the site of the future bone, which differentiate into bone and cartilage-forming cells. During long bone development, an initial cartilaginous template is formed and replaced by bone in a coordinated and refined program involving chondrocyte proliferation and maturation, vascular invasion, recruitment of adult stem cells and intense remodeling of cartilage and bone matrix. Matrix metalloproteinases (MMPs) are the most important enzymes for cleaving structural components of the extracellular matrix (ECM), as well as other non-ECM molecules in the ECM space, pericellular perimeter and intracellularly. Thus, the bioactive molecules generated act on several biological events, such as development, tissue remodeling and homeostasis. Since the discovery of collagenase in bone cells, more than half of the MMP members have been detected in bone tissues under both physiological and pathological conditions. Pivotal functions of MMPs during development and bone regeneration have been revealed by knockout mouse models, such as chondrocyte proliferation and differentiation, osteoclast recruitment and function, bone modeling, coupling of bone resorption and formation (bone remodeling), osteoblast recruitment and survival, angiogenesis, osteocyte viability and function (biomechanical properties); as such alterations in MMP function may alter bone quality. In this review, we look at the principal properties of MMPs and their inhibitors (TIMPs and RECK), provide an up-date on their known functions in bone development and remodeling and discuss their potential application to Bone Bioengineering.
    Archives of Biochemistry and Biophysics 08/2014; DOI:10.1016/ · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Torg and Winchester syndromes and patients reported by Al-AqeelSawairi as well as nodulosis-arthropathy-osteolysis (NAO) patients, patients with multicentric NAO share autosomal recessive inheritance. The common presenting symptomatology includes progressive osteolysis chiefly affecting the carpal, tarsal and interphalangeal joints. Here, we report a patient with Torg syndrome. Torg syndrome is caused by homozygous or compound heterozygous mutations in the matrix metalloproteinase 2 (MMP2) gene. MMP2 codes for a gelatinase that cleaves type IV collagen, a major component of basement membrane. The clinical presentation of our patient included moderate osteolysis of the small joints of the hands and knees, hirsutism, nodulosis sparing the palms and soles, corneal opacities and mild facial dysmorphism without gum hypertrophy. Genetic analysis showed that the patient was homozygous for a novel base variant c538 G>A (p.D180N) in the MMP2 gene. Both parents were carriers of the same mutated variant. Our patient had some previously unreported endocrine manifestations such as premature thelarche and elevated follicle-stimulating hormone levels.
    Journal of Clinical Research in Pediatric Endocrinology 03/2014; 6(1):40-6. DOI:10.4274/Jcrpe.1166

Full-text (2 Sources)

Available from
May 28, 2014