Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity

Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
Genome Research (Impact Factor: 13.85). 12/2008; 18(12):2005-15. DOI: 10.1101/gr.083055.108
Source: PubMed

ABSTRACT The Caenorhabditis elegans genome encodes more than 100 microRNAs (miRNAs). Genetic analyses of miRNA deletion mutants have only provided limited insights into miRNA function. To gain insight into the function of miRNAs, it is important to determine their spatiotemporal expression pattern. Here, we use miRNA promoters driving the expression of GFP as a proxy for miRNA expression. We describe a set of 73 transgenic C. elegans strains, each expressing GFP under the control of a miRNA promoter. Together, these promoters control the expression of 89 miRNAs (66% of all predicted miRNAs). We find that miRNA promoters drive GFP expression in a variety of tissues and that, overall, their activity is similar to that of protein-coding gene promoters. However, miRNAs are expressed later in development, which is consistent with functions after initial body-plan specification. We find that miRNA members belonging to families are more likely to be expressed in overlapping tissues than miRNAs that do not belong to the same family, and provide evidence that intronic miRNAs may be controlled by their own, rather than a host gene promoter. Finally, our data suggest that post-transcriptional mechanisms contribute to differential miRNA expression. The data and strains described here will provide a valuable guide and resource for the functional analysis of C. elegans miRNAs.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of gene expression by microRNAs (miRNAs) is essential for normal development, but the roles of miRNAs in the physiology of adult animals are poorly understood. We have isolated a conditional allele of DGCR8/pash-1, which allows reversible and rapid inactivation of miRNA synthesis in vivo in Caenorhabditis elegans. This is a powerful new tool that allows dissection of post-developmental miRNA functions. We demonstrate that continuous synthesis of miRNAs is dispensable for cellular viability but critical for the physiology of adult animals. Loss of miRNA synthesis in the adult reduces lifespan and results in rapid aging. The insulin/IGF-1 signaling pathway is a critical determinant of lifespan, and is modulated by miRNAs. We find that although miRNA expression is required for some mechanisms of lifespan extension, it is not essential for the longevity of animals lacking insulin/IGF-1 signaling. Further, misregulated insulin/IGF-1 signaling cannot account for the reduced lifespan caused by disruption of miRNA synthesis. We show that miRNAs act in parallel with insulin/IGF-1 signaling to regulate a shared set of downstream genes important for physiological processes that determine lifespan. We conclude that coordinated transcriptional and post-transcriptional regulation of gene expression promotes longevity.
    RNA 10/2012; 18. DOI:10.1261/rna.035402.112 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How cells adopt different expression patterns is a fundamental question of developmental biology. We quantitatively measured reporter expression of 127 genes, primarily transcription factors, in every cell and with high temporal resolution in C. elegans embryos. Embryonic cells are highly distinct in their gene expression; expression of the 127 genes studied here can distinguish nearly all pairs of cells, even between cells of the same tissue type. We observed recurrent lineage-regulated expression patterns for many genes in diverse contexts. These patterns are regulated in part by the TCF-LEF transcription factor POP-1. Other genes' reporters exhibited patterns correlated with tissue, position, and left-right asymmetry. Sequential patterns both within tissues and series of sublineages suggest regulatory pathways. Expression patterns often differ between embryonic and larval stages for the same genes, emphasizing the importance of profiling expression in different stages. This work greatly expands the number of genes in each of these categories and provides the first large-scale, digitally based, cellular resolution compendium of gene expression dynamics in live animals. The resulting data sets will be a useful resource for future research.
    Genome Research 04/2012; 22(7):1282-94. DOI:10.1101/gr.131920.111 · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The life span of Caenorhabditis elegans is controlled by signaling between the germline and the soma. Germ cell removal extends life span by triggering the activation of the DAF-16/FOXO transcription factor in the intestine. Here we analyze microRNA function in C. elegans aging and show that the microRNA mir-71 functions to mediate the effects of germ cell loss on life span. mir-71 is required for the life span extension caused by germline removal, and overexpression of mir-71 further extends the life span of animals lacking germ cells. mir-71 functions in the nervous system to facilitate the localization and transcriptional activity of DAF-16 in the intestine. Our findings reveal a microRNA-dependent mechanism of life span regulation by the germline and indicate that signaling among the gonad, the nervous system, and the intestine coordinates the life span of the entire organism.
    Cell metabolism 04/2012; 15(4):439-50. DOI:10.1016/j.cmet.2012.02.014 · 16.75 Impact Factor


1 Download
Available from