Article

Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity.

Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
Genome Research (Impact Factor: 13.85). 12/2008; 18(12):2005-15. DOI: 10.1101/gr.083055.108
Source: PubMed

ABSTRACT The Caenorhabditis elegans genome encodes more than 100 microRNAs (miRNAs). Genetic analyses of miRNA deletion mutants have only provided limited insights into miRNA function. To gain insight into the function of miRNAs, it is important to determine their spatiotemporal expression pattern. Here, we use miRNA promoters driving the expression of GFP as a proxy for miRNA expression. We describe a set of 73 transgenic C. elegans strains, each expressing GFP under the control of a miRNA promoter. Together, these promoters control the expression of 89 miRNAs (66% of all predicted miRNAs). We find that miRNA promoters drive GFP expression in a variety of tissues and that, overall, their activity is similar to that of protein-coding gene promoters. However, miRNAs are expressed later in development, which is consistent with functions after initial body-plan specification. We find that miRNA members belonging to families are more likely to be expressed in overlapping tissues than miRNAs that do not belong to the same family, and provide evidence that intronic miRNAs may be controlled by their own, rather than a host gene promoter. Finally, our data suggest that post-transcriptional mechanisms contribute to differential miRNA expression. The data and strains described here will provide a valuable guide and resource for the functional analysis of C. elegans miRNAs.

0 Bookmarks
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Dietary restriction (DR) has been shown to prolong longevity across diverse taxa, yet the mechanistic relationship between DR and longevity remains unclear. MicroRNAs (miRNAs) control aging-related functions such as metabolism and lifespan through regulation of genes in insulin signaling, mitochondrial respiration, and protein homeostasis. Results: We have conducted a network analysis of aging-associated miRNAs connected to transcription factors PHA-4/FOXA and SKN-1/Nrf, which are both necessary for DR-induced lifespan extension in Caenorhabditis elegans. Our network analysis has revealed extensive regulatory interactions between PHA-4, SKN-1, and miRNAs and points to two aging-associated miRNAs, miR-71 and miR-228, as key nodes of this network. We show that miR-71 and miR-228 are critical for the response to DR in C. elegans. DR induces the expression of miR-71 and miR-228, and the regulation of these miRNAs depends on PHA-4 and SKN-1. In turn, we show that PHA-4 and SKN-1 are negatively regulated by miR-228, whereas miR-71 represses PHA-4. Conclusions: Based on our findings, we have discovered new links in an important pathway connecting DR to aging. By interacting with PHA-4 and SKN-1, miRNAs transduce the effect of dietary-restriction-mediated lifespan extension in C. elegans. Given the conservation of miRNAs, PHA-4, and SKN-1 across phylogeny, these interactions are likely to be conserved in more-complex species.
    Current Biology 09/2014; 24(19). DOI:10.1016/j.cub.2014.08.013 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons have evolved to employ many factors involved in the regulation of RNA processing due to their complex cellular compartments. RNA binding proteins (RBPs) are key regulators in transcription, translation, and RNA degradation. Increasing studies have shown that regulatory RNA processing is critical for the establishment, functionality, and maintenance of neural circuits. Recent advances in high-throughput transcriptomics have rapidly expanded our knowledge of the landscape of RNA regulation, but also raised the challenge for mechanistic dissection of the specific roles of RBPs in complex tissues such as the nervous system. The C. elegans genome encodes many RBPs conserved throughout evolution. The rich analytic tools in molecular genetics and simple neural anatomy of C. elegans offer advantages to define functions of genes in vivo at the level of a single cell. Notably, the discovery of microRNAs has had transformative effects to the understanding of neuronal development, circuit plasticity, and neurological diseases. Here we review recent studies unraveling diverse roles of RBPs in the development, function, and plasticity of C. elegans nervous system. We first summarize the general technologies for studying RBPs in C. elegans. We then focus on the roles of several RBPs that control gene- and cell-type specific production of neuronal transcripts.
    Frontiers in Molecular Neuroscience 01/2014; 7:100. DOI:10.3389/fnmol.2014.00100
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analyses of gene expression profiles in evolutionarily diverse organisms have revealed a role for microRNAs in tuning tissue-specific gene expression. Here, we show that the relatively abundant and constitutively expressed miR-58 family of microRNAs sharply defines the tissue-specific expression of the broadly transcribed gene encoding PMK-2 p38 MAPK in Caenorhabditis elegans. Whereas PMK-2 functions redundantly with PMK-1 in the nervous system to regulate neuronal development and behavioral responses to pathogenic bacteria, the miR-58, miR-80, miR-81, and miR-82 microRNAs function redundantly to destabilize pmk-2 mRNA in non-neuronal cells with switch-like potency. Our data suggest a role for the miR-58 family in the establishment of neuronal-specific gene expression in C. elegans, and support a more general role for microRNAs in the establishment of tissue-specific gene expression.
    PLoS Genetics 02/2015; 11(2):e1004997. DOI:10.1371/journal.pgen.1004997 · 8.17 Impact Factor

Preview

Download
1 Download
Available from