Article

Clinical and genetic delineation of neurodegeneration with brain iron accumulation

Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
Journal of Medical Genetics (Impact Factor: 5.64). 12/2008; 46(2):73-80. DOI: 10.1136/jmg.2008.061929
Source: PubMed

ABSTRACT Neurodegeneration with brain iron accumulation (NBIA) describes a group of progressive neurodegenerative disorders characterised by high brain iron and the presence of axonal spheroids, usually limited to the central nervous system. Mutations in the PANK2 gene account for the majority of NBIA cases and cause an autosomal recessive inborn error of coenzyme A metabolism called pantothenate kinase associated neurodegeneration (PKAN). More recently, it was found that mutations in the PLA2G6 gene cause both infantile neuroaxonal dystrophy (INAD) and, more rarely, an atypical neuroaxonal dystrophy that overlaps clinically with other forms of NBIA. High brain iron is also present in a portion of these cases. Clinical assessment, neuroimaging, and molecular genetic testing all play a role in guiding the diagnostic evaluation and treatment of NBIA.

Download full-text

Full-text

Available from: Allison Gregory, Jul 07, 2015
0 Followers
 · 
195 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipase A2 associated neurodegeneration (PLAN) is a major phenotype of autosomal recessive Neurodegeneration with Brain Iron Accumulation (NBIA). We describe the clinical phenotypes, neuroimaging features and PLA2G6 mutations in 5 children, of whom 4 presented with infantile neuroaxonal dystrophy (INAD). One other patient was diagnosed with the onset of PLAN in childhood, and our report highlights the diagnostic challenges associated with this atypical PLAN subtype. In this series, the neuroradiological relevance of the classical PLAN features as well as ‘apparent claval hypertrophy’ is explored. Novel PLA2G6 mutations were identified in all patients. PLAN should be considered not only in patients presenting with a classic INAD phenotype but also in older patients presenting later in childhood with non-specific progressive neurological features including social communication difficulties, gait disturbance, dyspraxia, neuropsychiatric symptoms and extrapyramidal motor features.
    Molecular Genetics and Metabolism 06/2014; 112(2). DOI:10.1016/j.ymgme.2014.03.008 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2(-/-)) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2(-/-) mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration.
    Brain 12/2013; 137(1). DOI:10.1093/brain/awt325 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives. Pantothenate kinase-associated neurodegeneration (PKAN) is a rare disease caused by pantothenate kinase 2 (PANK2, OMIM 606157) mutations. This study is aimed to investigate clinical presentations, pathologies, and genetics in patients with PKAN. Methods. Two patients with PKAN were reported. We reviewed the literature to include additional 19 patients with PKAN in Eastern Asia. These patients were divided into classic and atypical groups by the age of onset. We compared the data on PKAN patients of Asian and Caucasian populations. Results. We found iron deposits in the globus pallidus in our Patient 1 and a heterozygous truncating mutation (c.1408insT) in Patient 2. Literature review shows that generalized dystonia and bulbar signs are more common in classic PKAN patients, whereas segmental dystonia and tremors are more specific to atypical ones. Asian patients have less complex presentations-lower prevalence of pyramidal signs, mental impairment, and parkinsonism-than Caucasians. D378G in exon 3 is the most frequent mutation (28%) in Asians. Conclusions. Our study demonstrates that the distribution of dystonia is the major distinction between subgroups of PKAN. Caucasian patients have more complex presentations than Asians. Exon 3 and 4 are hot spots for screening PANK2 mutations in Asian patients.
    The Scientific World Journal 11/2013; 2013:860539. DOI:10.1155/2013/860539 · 1.73 Impact Factor