Article

HITS-CLIP yields genome-wide insights into brain alternative RNA processing

Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
Nature (Impact Factor: 42.35). 12/2008; 456(7221):464-9. DOI: 10.1038/nature07488
Source: PubMed

ABSTRACT Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.

Download full-text

Full-text

Available from: John J Fak, Jun 29, 2015
1 Follower
 · 
279 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenomatous polyposis coli (APC) is a microtubule plus-end scaffolding protein important in biology and disease. APC is implicated in RNA localization, although the mechanisms and functional signifi- cance remain unclear. We show APC is an RNA-bind- ing protein and identify an RNA interactome by HITS-CLIP. Targets were highly enriched for APC- related functions, including microtubule organiza- tion, cell motility, cancer, and neurologic disease. Among the targets is b2B-tubulin, known to be required in human neuron and axon migration. We show b2B-tubulin is synthesized in axons and local- izes preferentially to dynamic microtubules in the growth cone periphery. APC binds the b2B-tubulin 30 UTR; experiments interfering with this interaction reduced b2B-tubulin mRNA axonal localization and expression, depleted dynamic microtubules and the growth cone periphery, and impaired neuron migration. These results identify APC as a platform binding functionally related protein and RNA net- works, and suggest a self-organizing model for the microtubule to localize synthesis of its own subunits.
    Cell 07/2014; 158(2):368-382. DOI:10.1016/j.cell.2014.05.042 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The RNA binding proteins Rbfox1/2/3 regulate alternative splicing in the nervous system, and disruption of Rbfox1 has been implicated in autism. However, comprehensive identification of functional Rbfox targets has been challenging. Here, we perform HITS-CLIP for all three Rbfox family members in order to globally map, at a single-nucleotide resolution, their in vivo RNA interaction sites in the mouse brain. We find that the two guanines in the Rbfox binding motif UGCAUG are critical for protein-RNA interactions and crosslinking. Using integrative modeling, these interaction sites, combined with additional datasets, define 1,059 direct Rbfox target alternative splicing events. Over half of the quantifiable targets show dynamic changes during brain development. Of particular interest are 111 events from 48 candidate autism-susceptibility genes, including syndromic autism genes Shank3, Cacna1c, and Tsc2. Alteration of Rbfox targets in some autistic brains is correlated with downregulation of all three Rbfox proteins, supporting the potential clinical relevance of the splicing-regulatory network.
    Cell Reports 03/2014; DOI:10.1016/j.celrep.2014.02.005 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcriptome changes hugely during development of the brain. Whole genes, alternate exons, and single base pair changes related to RNA editing all show differences between embryonic and mature brain. Collectively, these changes control proteomic diversity as the brain develops. Additionally, there are many changes in noncoding RNAs (miRNA and lncRNA) that interact with mRNA to influence the overall transcriptional landscape. Here, we will discuss what is known about such changes in brain development, particularly focusing on high-throughput approaches and how those can be used to infer mechanisms by which gene expression is controlled in the brain as it matures.
    International Review of Neurobiology 01/2014; 116C:233-250. DOI:10.1016/B978-0-12-801105-8.00009-6 · 2.46 Impact Factor