HITS-CLIP yields genome-wide insights into brain alternative RNA processing.

Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
Nature (Impact Factor: 42.35). 12/2008; 456(7221):464-9. DOI: 10.1038/nature07488
Source: PubMed

ABSTRACT Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rbfox family of RNA binding proteins is highly conserved with established roles in alternative splicing regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of alternative splicing events. This finding is consistent with requirements for tissue specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a C. elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1(-/-) muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1(-/-) muscle. Moreover, muscle function was significantly impaired in Rbfox1(-/-) muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of alternative splicing events required to maintain multiple aspects of muscle physiology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email:
    Human Molecular Genetics 01/2015; · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CTCF is a master regulator that plays important roles in genome architecture and gene expression. How CTCF is recruited in a locus-specific manner is not fully understood. Evidence from epigenetic processes, such as X chromosome inactivation (XCI), indicates that CTCF associates functionally with RNA. Using genome-wide approaches to investigate the relationship between its RNA interactome and epigenomic landscape, here we report that CTCF binds thousands of transcripts in mouse embryonic stem cells, many in close proximity to CTCF's genomic binding sites. CTCF is a specific and high-affinity RNA-binding protein (Kd < 1 nM). During XCI, CTCF differentially binds the active and inactive X chromosomes and interacts directly with Tsix, Xite, and Xist RNAs. Tsix and Xite RNAs target CTCF to the X inactivation center, thereby inducing homologous X chromosome pairing. Our work elucidates one mechanism by which CTCF is recruited in a locus-specific manner and implicates CTCF-RNA interactions in long-range chromosomal interactions. Copyright © 2015 Elsevier Inc. All rights reserved.
    Molecular cell. 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pervasive transcription of the genome creates many types of non-coding RNAs (ncRNAs). However, we know very little regarding the functions and the regulatory mechanisms of these ncRNAs. Exploring the interactions of RNA and RNA binding proteins (RBPs) is vital because it can allow us to truly understand how these ncRNAs behave in vivo. High-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP or CLIP-seq) and its variants have been successfully used as systemic techniques to study RBP binding sites. In this review, we will explain the major differences between the CLIP techniques, summarize successful applications of these techniques, discuss limitations of CLIP, present some suggested solutions and project their promising future roles in studying the RNA world.
    Science China. Life sciences. 01/2015; 58(1):75-88.


Available from
Jun 1, 2014