Dhar, S, Gu, FX, Langer, R, Farokhzad, OC and Lippard, SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 105: 17356-17361

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 12/2008; 105(45):17356-61. DOI: 10.1073/pnas.0809154105
Source: PubMed


Cisplatin is used to treat a variety of tumors, but dose limiting toxicities or intrinsic and acquired resistance limit its application in many types of cancer including prostate. We report a unique strategy to deliver cisplatin to prostate cancer cells by constructing Pt(IV)-encapsulated prostate-specific membrane antigen (PSMA) targeted nanoparticles (NPs) of poly(D,L-lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-functionalized controlled release polymers. By using PLGA-b-PEG nanoparticles with PSMA targeting aptamers (Apt) on the surface as a vehicle for the platinum(IV) compound c,t,c-[Pt(NH(3))(2)(O(2)CCH(2)CH(2)CH(2)CH(2)CH(3))(2)Cl(2)] (1), a lethal dose of cisplatin was delivered specifically to prostate cancer cells. PSMA aptamer targeted delivery of Pt(IV) cargos to PSMA(+) LNCaP prostate cancer cells by endocytosis of the nanoparticle vehicles was demonstrated using fluorescence microscopy by colocalization of green fluorescent labeled cholesterol-encapsulated NPs and early endosome marker EEA-1. The choice of linear hexyl chains in 1 was the result of a systematic study to optimize encapsulation and controlled release from the polymer without compromising either feature. Release of cisplatin from the polymeric nanoparticles after reduction of 1 and formation of cisplatin 1,2-intrastrand d(GpG) cross-links on nuclear DNA was confirmed by using a monoclonal antibody for the adduct. A comparison between the cytotoxic activities of Pt(IV)-encapsulated PLGA-b-PEG NPs with the PSMA aptamer on the surface (Pt-NP-Apt), cisplatin, and the nontargeted Pt(IV)-encapsulated NPs (Pt-NP) against human prostate PSMA-overexpressing LNCaP and PSMA(-) PC3 cancer cells revealed significant differences. The effectiveness of PSMA targeted Pt-NP-Apt nanoparticles against the PSMA(+) LNCaP cells is approximately an order of magnitude greater than that of free cisplatin.

Download full-text


Available from: Frank Gu, Jun 19, 2014
  • Source
    • "Encapsulation of cisplatin in nanocarriers (Oberoi et al., 2013) or modification of tumour-specific antigens (Dhar et al., 2008) improves homing to the tumour lesion and stabilizes concentration of the cisplatin in the vicinity of the tumour. Zhang et al. analysed distribution of platinum in cisplatin-and platinum-anthraquinone conjugate-treated colon cancer 3D spheroids, revealing hotspots of platinum accumulation in necrotic foci, often responsible for tumour relapse. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal-based coordination compounds have been used throughout the history of human medicine to treat various diseases, including cancer. Since the discovery of cisplatin in 1965, a great number of metal coordination complexes, such as platinum, ruthenium, gold or copper have been designed, synthesized and tested in order to develop clinically effective and safe drugs. Currently, many reviews cover applications of cytostatic metal complexes pointing out the most promising examples of platinum- and non-platinum-based compounds in preclinical and clinical trials. However, recent comprehensive reviews covering chemical and biological aspects of metal-based coordination compounds in cancer therapy are still rare. In this review we wish to provide an overview of the coordination chemistry of current and novel cytostatic compounds, including an outline of their design and rationale of synthesis, and summarize bio-chemical reactivity and physicochemical properties of candidate metal complexes.
    Journal of applied biomedicine 03/2015; 13(2). DOI:10.1016/j.jab.2015.03.003 · 1.30 Impact Factor
  • Source
    • "The development of nanotechnology has resulted in an enhanced permeability and retention (EPR) effect for many anti-cancer agents, reducing their nonspecific accumulation in normal tissues and increasing their preferential accumulation in tumors [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]. Such nanotechnology has been extensively used for the delivery of cisplatin [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]. In 2014, NC-6004 (cisplatin-incorporated PEG-polyglutamate block copolymer micelle) reached the Phase III stage of clinical trials in East Asia [29] [30] [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Platinum-based polymeric nano-drugs, especially cisplatin-loaded polymeric nanoparticles (CDDP-NPs), have been extensively exploited for the treatment of solid tumors. However, it is still unclear what role the processing procedure and the properties of the polymeric carrier materials may play in influencing the plasma pharmacokinetics, biodistribution and in vivo efficacy of CDDP-NPs. In this study, a series of poly(l-glutamic acid)-g-methoxy poly(ethylene glycol) (PLG-g-mPEG) copolymers were synthesized for the preparation of CDDP-loaded PLG-g-mPEG (CDDP/PLG-g-mPEG) nanoparticles. All of the parameters, including PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length, ultrafiltration purification and cisplatin loading content, were found to have a significant influence on the plasma pharmacokinetics of the CDDP/PLG-g-mPEG nanoparticles. The blood circulation time of the nanoparticles was prolonged with increases in PLG molecular weight, mPEG/PLG weight ratio, mPEG chain length and CDDP loading content. The use of ultrafiltration purification could prolong the blood circulation time of the nanoparticles as well. Experiments to measure the pharmacokinetics and biodistribution demonstrated that the selected CDDP/PLG-g-mPEG nanoparticles, NP10, had a long blood circulation time and could achieve selective and significant accumulation in Lewis lung carcinoma (LLC) tumors. The platinum plasma concentrations in the LLC tumor-bearing mice receiving NP10 remained up to 46-fold higher than that of mice receiving equivalent doses of free CDDP. In addition, the plasma area under the concentration time curve (AUC) of NP10 was 31-fold higher than that of free CDDP in 48h. The platinum concentration ratio of NP10 to free CDDP in tumors reached as high as 9.4. The tumor AUC ratio of NP10 to CDDP was 6. Using a mouse C26 tumor model, here we demonstrate that NP10 improves the safety and tolerance in vivo when compared to CDDP and effectively inhibits the growth of C26 tumors. Furthermore, increasing the dosage of NP10 by 2 or 3-fold of free CCDP improved its anticancer efficacy to comparable or higher levels. These results indicate that CDDP/PLG-g-mPEG nanoparticles have greater potential for the treatment of solid tumors in clinical application. Copyright © 2014. Published by Elsevier B.V.
    Journal of Controlled Release 12/2014; 205. DOI:10.1016/j.jconrel.2014.12.022 · 7.71 Impact Factor
  • Source
    • "To date, the most commonly employed vehicles are aptamer-linked NPs encapsulating a hydrophobic chemotherapeutic agent (NPs; Fig. 2A). These NPs show great diversity based on their drug-loading characteristics, and they may be classified primarily as polymeric NPs (e.g., poly (lactide-co-glycolide), or PLGA), metallic NPs (e.g., gold NPs, or GNPs), magnetic NPs (e.g., Fe3O4), silica NPs, liposomes, micelles, and quantum dots (QDs), among others 19-22. These vehicles are advantageous for drug loading and an extended period of chemotherapeutic drug administration because the drug cargo is independent. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics.
    Theranostics 07/2014; 4(9):931-944. DOI:10.7150/thno.9663 · 8.02 Impact Factor
Show more