Short-chain acyl-coenzyme A dehydrogenase deficiency

Division of Human and Molecular Genetics, Children's Hospital of Philadelphia, Abramson Research Center, Room 1002, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
Molecular Genetics and Metabolism (Impact Factor: 2.83). 01/2009; 95(4):195-200. DOI: 10.1016/j.ymgme.2008.09.007
Source: PubMed

ABSTRACT Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a disorder of mitochondrial fatty acid oxidation that leads to the accumulation of butyrylcarnitine and ethylmalonic acid in blood and urine. Originally described with a relatively severe phenotype, most patients are now diagnosed through newborn screening by tandem mass spectrometry and remain asymptomatic. Molecular analysis of affected individuals has identified a preponderance of private inactivating point mutations and one common one present in high frequency in individuals of Ashkenazi Jewish ancestry. In addition, two polymorphic variants have been identified that have little affect on enzyme kinetics but impair folding and stability. Individuals homozygous for one of these variants or compound heterozygous for one of each often show an increased level of ethylmalonic acid excretion that appears not to be clinically significant. The combination of asymptomatic affected newborns and the frequent variants can cause much confusion in evaluating and treating individuals with SCADD. The long-term consequences and the need for chronic therapy remain current topics of contention and investigation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian lipoxygenases belong to a family of lipid-peroxidizing enzymes, which have been implicated in cardiovascular, hyperproliferative and neurodegenerative diseases. Here we report that a naturally occurring mutation in the hALOX15 gene leads to expression of a catalytically near-null enzyme variant (hGly422Glu). The inactivity may be related to severe misfolding of the enzyme protein, which was concluded from CD-spectra as well as from thermal and chemical stability assays. In silico mutagenesis experiments suggests that most mutations at hGly422 have the potential to induce sterical clash, which might be considered a reason for protein misfolding. hGly422 is conserved among ALOX5, ALOX12 and ALOX15 isoforms and corresponding hALOX12 and hALOX5 mutants also exhibited a reduced catalytic activity. Interestingly, in the hALOX5 Gly429Glu mutants the reaction specificity of arachidonic acid oxygenation was shifted from 5S- to 8S- and 12R-H(p)ETE formation. Taken together, our data indicate that the conserved glycine is of functional importance for these enzyme variants and most mutants at this position lose catalytic activity.
    Biochimica et Biophysica Acta 08/2013; DOI:10.1016/j.bbalip.2013.08.004 · 4.66 Impact Factor
  • Source
    Sudanese Pediatric Association conference, Khartoum, Sudan; 08/2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic profiling may provide insight into biologic mechanisms related to age-related increases in regional adiposity and insulin resistance. The objectives of the current study were to characterize the association between mid-thigh intermuscular and subcutaneous adipose tissue (IMAT, SCAT, respectively) and, abdominal adiposity with the serum metabolite profile, to identify significant metabolites as further associated with the homeostasis model assessment of insulin resistance (HOMA-IR), and, to develop a HOMA-IR associated metabolite predictor set representative of regional adiposity, in 73 functionally-limited (short physical performance battery ≤10; SPPB) older adults (age range, 70-85 y). Fasting levels of 181 total metabolites, including amino acids, fatty acids and acylcarnitines were measured with use of an untargeted mass spectrometry-based metabolomic approach. Multivariable-adjusted linear regression was used in all analyses. Thirty-two, seven and one metabolite(s) were found to be associated with IMAT, abdominal adiposity and, SCAT, respectively, including the amino acid glycine, which was positively associated with SCAT and, negatively associated with both IMAT and abdominal adiposity. Glycine and four metabolites found to be significantly associated with regional adiposity were additionally associated with HOMA-IR. Separate stepwise regression models identified glycine as a HOMA-IR associated marker of both IMAT (model R(2) = 0.51, p<0.0001) and abdominal adiposity (model R(2) = 0.41, p<0.0001). Our findings for a positive association between glycine with SCAT but, a negative association between glycine with IMAT and abdominal adiposity supports the hypothesis that SCAT metabolic processes are different from that found in other fat depots. In addition, because of the significant associations found between glycine with HOMA-IR, IMAT, SCAT and abdominal adiposity, our results suggest glycine as a serum biomarker of both insulin sensitivity and regional fat mass in functionally-limited older adults.
    PLoS ONE 12/2013; 8(12):e84034. DOI:10.1371/journal.pone.0084034 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014