Article

Transient intraneuronal A beta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice.

Division of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, Department of Psychiatry, University of Goettingen, von-Siebold-Str. 5, 37075, Göttingen, Germany.
Acta Neuropathologica (Impact Factor: 9.78). 01/2009; 116(6):647-55. DOI: 10.1007/s00401-008-0451-6
Source: PubMed

ABSTRACT The accumulation of beta-amyloid (A beta) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau protein are pathological features of Alzheimer's disease (AD) commonly modeled in mice using known human familial mutations; however, the loss of neurons also found to occur in AD is rarely observed in such models. The mechanism of neuron degeneration remains unclear but is of great interest as it is very likely an important factor for the onset of adverse memory deficits occurring in individuals with AD. The role of A beta in the neuronal degeneration is a matter of controversial debates. In the present study we investigated the impact of extracellular plaque A beta versus intraneuronal A beta on neuronal cell death. The thalamus and the frontal cortex of the APP/PS1KI mouse model were chosen for stereological quantification representing regions with plaques only (thalamus) or plaques as well as intraneuronal A beta (frontal cortex). A loss of neurons was found in the frontal cortex at the age of 6 months coinciding with the decrease of intraneuronal immunoreactivity, suggesting that the neurons with early intraneuronal A beta accumulation were lost. Strikingly, no neuron loss was observed in the thalamus despite the development of abundant plaque pathology with levels comparable to the frontal cortex. This study suggests that plaques have no effect on neuron death whereas accumulation of intraneuronal A beta may be an early transient pathological event leading to neuron loss in AD.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been well documented that β-amyloid (Aβ) peptide accumulation and aggregation in the brain plays a crucial role in the pathophysiology of Alzheimer’s disease (AD). However, a new orientation of the amyloid cascade hypothesis has evidenced that soluble forms of the peptide (sAβ) are involved in Aβ-induced cognitive impairment and cause rapid disruption of the synaptic mechanisms underlying memory. The primary aim of this study was to elucidate the effects of sAβ, acutely injected intracerebrally (i.c.v., 4 μM), on the short term and long term memory of young adult male rats, by using the novel object recognition task. Glutamatergic receptors have been proposed as mediating the effect of Aβ on synaptic plasticity and memory. Thus, we also investigated the effects of sAβ on prefrontal cortex (PFC) glutamate release and the specific contribution of N-methyl-D-aspartate (NMDA) receptor modulation to the effects of sAβ administration on the cognitive parameters evaluated. We found that a single i.c.v. injection of sAβ 2 h before testing did not alter the ability of rats to differentiate between a familiar and a novel object, in a short term memory test, while it was able to negatively affect consolidation/retrieval of long term memory. Moreover, a significant increase of glutamate levels was found in PFC of rats treated with the peptide 2 h earlier. Interestingly, memory deficit induced by sAβ was reversed by a NMDA-receptor antagonist, memantine (5 mg/kg i.p), administered immediately after the familiarization trial (T1). On the contrary, memantine administered 30 min before T1 trial, was not able to rescue long term memory impairment. Taken together, our results suggest that an acute i.c.v. injection of sAβ peptide interferes with the consolidation/retrieval of long term memory. Moreover, such sAβ-induced effect indicates the involvement of glutamatergic system, proposing that NMDA receptor inhibition might prevent or lead to the recovery of early cognitive impairment. http://journal.frontiersin.org/Journal/10.3389/fnbeh.2014.00332/full#h1
    Frontiers in Behavioral Neuroscience 09/2014; 8(332). DOI:10.3389/fnbeh.2014.00332 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intraneuronal accumulation of beta-amyloid protein (Aβ) is an early pathological change in Alzheimer's disease (AD). Recent studies demonstrate that α7 nicotinic acetylcholine receptor (α7nAChR) binds to soluble Aβ with a high affinity. In vitro and in vivo experiments also show that Aβ activates p38 MAPK and ERK1/2 signaling pathways via the α7nAChR. Interestingly, it has been reported that p38 MAPK and ERK1/2 signaling pathways affect the regulation of receptor-mediated endocytosis. These data suggest that MAPK signaling pathways maybe involved in the regulation of α7nAChR-mediated Aβ uptake. However, the evidence for this hypothesis is lacking. In the present study, we examined whether Aβ1-42 oligomers activate MAPK signaling pathways via α7nAChR, and assessed the role of MAPK signaling pathways in the regulation of Aβ1-42 uptake by α7nAChR. We confirm that undifferentiated SH-SY5Y cells are capable of taking up extracellular Aβ1-42. The internalization of Aβ1-42 accumulates in the endosomes/lysosomes and mitochondria. MAPK signaling pathways are activated by Aβ1-42 via α7nAChR. Aβ1-42 and α7nAChR are co-localized in SH-SY5Y cells and the expression of α7nAChR involves in Aβ1-42 uptake and accumulation in SH-SY5Y cells. Our data demonstrate that Aβ1-42 induces an α7nAChR-dependent pathway that relates to the activation of p38 MAPK and ERK1/2, resulting in internalization of Aβ1-42. Our findings suggest that α7nAChR and MAPK signaling pathways play an important role in the uptake and accumulation of Aβ1-42 in SH-SY5Y cells. Blockade of α7nAChR may have a beneficial effect by limiting intracellular accumulation of amyloid in AD brain and serves a potential therapeutic target for AD.
    Neuroscience 08/2014; 278. DOI:10.1016/j.neuroscience.2014.08.013 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.
    Acta Neuropathologica 01/2015; 129(3). DOI:10.1007/s00401-014-1379-7 · 9.78 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
May 20, 2014

Similar Publications