Article

Effect of a proanthocyanidin-rich extract from longan flower on markers of metabolic syndrome in fructose-fed rats.

Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
Journal of Agricultural and Food Chemistry (Impact Factor: 2.91). 11/2008; 56(22):11018-24. DOI: 10.1021/jf801966y
Source: PubMed

ABSTRACT Recent evidence strongly suggests that oxidative stress due to redox imbalance is highly associated with metabolic syndrome. The objective of this study was to evaluate the effect of the supplementation of longan flower water extract (LFWE), which showed powerful antioxidative activity in vitro, on markers of metabolic syndrome in a fructose-fed rat model. Male Sprague-Dawley rats were randomly divided into four groups: group C, fed with standard Purina chow; group F, fed with high-fructose diet (HF) alone; group L, fed with HF plus LFWE 125 mg/kg bw per day by gavage; and group H, fed HF plus LFWE 250 mg/kg bw per day by gavage. The dietary manipulation lasted for 14 weeks. Results of our study showed that rats fed with HF resulted in oxidative stress and affected the antioxidant status including plasma thiobarbituric acid and liver antioxidant enzyme activity. Treatment with LFWE significantly augmented the antioxidant system. HF was able to cause insulin resistance and elevation of the blood pressure. The supplementation of LFWE ameliorated insulin resistance by enhancing the expression of insulin signaling pathway related proteins, including insulin receptor substrate-1 and glucose transporter 4. LFWE supplementation was also found to decrease systolic blood pressure. These findings indicate that longan flower water extract may improve the symptoms of metabolic syndrome in fructose-fed rats.

0 Bookmarks
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyphenol-rich plants are known to possess benefits to human health. Recent studies have revealed that many Traditional Chinese Medicines (TCMs) are rich sources of polyphenols and exhibit antioxidant and anti-inflammatory activities, and these TCMs have been shown experimentally to overcome some chronic diseases, including cancer. Longan flowers and seeds, two TCMs traditionally used for relieving pain and urinary diseases, have been revealed in our recent reports and other studies to possess rich amounts of polyphenolic species and exhibit strong anti-oxidant activity, and these could be applied for the treatment of diabetes and cancer. Herein, we review the recent findings regarding the benefits of these two TCMs in the treatment of human cancer and the possible cellular and molecular mechanisms of both substances.
    World journal of experimental medicine. 08/2012; 2(4):78-85.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review analyses the potential beneficial effects of procyanidins, the main class of flavonoids, in situations in which glucose homeostasis is disrupted. Because the disruption of glucose homeostasis can occur as a result of various causes, we critically review the effects of procyanidins based on the specific origin of each type of disruption. Where little or no insulin is present (Type I diabetic animals), summarized studies of procyanidin treatment suggest that procyanidins have a short-lived insulin-mimetic effect on the internal targets of the organism, an effect not reproduced in normoglycemic, normoinsulinemic healthy animals. Insulin resistance (usually linked to hyperinsulinemia) poses a very different situation. Preventive studies using fructose-fed models indicate that procyanidins may be useful in preventing the induction of damage and thus in limiting hyperglycemia. But the results of other studies using models such as high-fat diet treated rats or genetically obese animals are controversial. Although the effects on glucose parameters are hazy, it is known that procyanidins target key tissues involved in its homeostasis. Interestingly, all available data suggest that procyanidins are more effective when administered in one acute load than when mixed with food.
    Critical reviews in food science and nutrition 07/2012; 52(7):569-84. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Metabolic Syndrome increases the risk for atherosclerotic cardiovascular disease and type 2 Diabetes Mellitus. Increased fructose consumption and/or mineral deficiency have been associated with Metabolic Syndrome development. This study aimed to investigate the effects of 8 weeks consumption of a hypersaline sodium-rich naturally sparkling mineral water on 10% fructose-fed Sprague-Dawley rats (Metabolic Syndrome animal model). The ingestion of the mineral water (rich in sodium bicarbonate and with higher potassium, calcium, and magnesium content than the tap water used as control) reduced/prevented not only the fructose-induced increase of heart rate, plasma triacylglycerols, insulin and leptin levels, hepatic catalase activity, and organ weight to body weight ratios (for liver and both kidneys) but also the decrease of hepatic glutathione peroxidase activity and oxidized glutathione content. This mineral-rich water seems to have potential to prevent Metabolic Syndrome induction by fructose. We hypothesize that its regular intake in the context of modern diets, which have a general acidic character interfering with mineral homeostasis and are poor in micronutrients, namely potassium, calcium, and magnesium, could add surplus value and attenuate imbalances, thus contributing to metabolic and redox health and, consequently, decreasing the risk for atherosclerotic cardiovascular disease.
    International Journal of Endocrinology 01/2014; 2014:384583. · 2.52 Impact Factor