Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments

Department of Analytical Chemistry, University of Almería, 04120 Almería, Spain.
Talanta (Impact Factor: 3.51). 05/2006; 69(2):334-42. DOI: 10.1016/j.talanta.2005.09.037
Source: PubMed

ABSTRACT Pharmaceutical residues in the environment, and their potential toxic effects, have been recognized as one of the emerging research area in the environmental chemistry. The increasing attention, on pharmaceutical residues as potential pollutants, is due that they often have similar physico-chemical behaviour than other harmful xenobiotics which are persistent or produce adverse effects. In addition, by contrast with regulated pollutants, which often have longer environmental half-lives, its continuous introduction in the environment may make them "pseudopersistents". Pharmaceutical residues and/or their metabolites are usually detected in the environment at trace levels, but, even that, low concentration levels (ng/L or microg/L) can induce to toxic effects. In particular, this is the case of antibiotics and steroids that cause resistance in natural bacterial populations or endocrine disruption effects. In this study, an overview of the environmental occurrence and ecological risk assessment of pharmaceutical residues is presented from literature data. Risk Quotient method (RQ) was applied as a novel approach to estimate the environmental risk of pharmaceuticals that are most frequently detected in wastewater effluents, surface waters and sediments.

Download full-text


Available from: Amadeo R Fernández-Alba, Jul 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the occurrence and spatial distribution of 38 antibiotics in surface water and sediment samples of the Hailing Bay region, South China Sea, were investigated. Twenty-one, 16 and 15 of 38 antibiotics were detected with the concentrations ranging from <0.08 (clarithromycin) to 15,163ng/L (oxytetracycline), 2.12 (methacycline) to 1318ng/L (erythromycin-H2O), <1.95 (ciprofloxacin) to 184ng/g (chlortetracycline) in the seawater, discharged effluent and sediment samples, respectively. The concentrations of antibiotics in the water phase were correlated positively with chemical oxygen demand and nitrate. The source analysis indicated that untreated domestic sewage was the primary source of antibiotics in the study region. Fluoroquinolones showed strong sorption capacity onto sediments due to their high pseudo-partitioning coefficients. Risk assessment indicated that oxytetracycline, norfloxacin and erythromycin-H2O posed high risks to aquatic organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Marine Pollution Bulletin 04/2015; 95(1). DOI:10.1016/j.marpolbul.2015.04.025 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a lack of studies about the ecotoxicology of pharmaceutical products on marine environment. To predict possible adverse effects of pharmaceutical products on benthic biota, polychaetes Hediste diversicolor were exposed for 14-days to pharmaceutical-spiked sediments under laboratory conditions. Carbamazepine (CBZ), ibuprofen (IBP) and propranolol (PRO) at concentrations of 500ngg(-1), 50ngg(-1), 5ngg(-1), 0.5ngg(-1) and 0.05ngg(-1), fluoxetine (FX) and 17α-ethynylestradiol (EE2) at concentrations of 100ngg(-1), 10ngg(-1), 1ngg(-1), 0.1ngg(-1) and 0.01ngg(-1), including environmental concentrations (underlined), were spiked in marine sediment samples. After the exposure, cellular energy status (total lipids content - TLP; and mitochondrial electron transport activity - MET), metabolism of monoamines (monoamine oxidase activity - MAO) and inflammation properties (cyclooxygenase activity - COX) were observed in polychaetes. CBZ increased TLP content and MET activity, and decreased MAO activity in polychaetes. IBP did not interfere on the TLP level, but on the MET and MAO activities (environmental concentrations). FX did not cause changes in the energy status. Therefore, environmental concentration diminished MAO activity. EE2 did not affect the energy status, however, MAO activity was significantly lower in polychaetes exposed to environmental concentration. PRO increased TLP level in polychaetes, but not MET activity. MAO activity was significantly lower for polychaetes exposed to environmental concentration. Except FX, all pharmaceuticals showed anti-inflammatory properties confirmed by the decrease of COX activity. Pharmaceutical products affected H. diversicolor physiology and health. As a benthic top predator, adverse effects on sea-worms can potentially culminate in ecosystem perturbations. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 04/2015; 118:27-36. DOI:10.1016/j.ecoenv.2015.04.010 · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds (LPhACs), such as antibiotics (roxithromycin, erythromycin and ketoconazole), anti-inflammatories (ibuprofen and diclofenac), β-blockers (propranolol), antiepileptics (carbamazepine) and steroid hormones (17α-ethinylestradiol), were investigated in the downstream rivers of sewage treatment plants in Nanjing, China. The results indicate that these LPhACs were widely detected in the surface water and fish samples, with the mean concentrations of the total LPhACs (ΣLPhACs) being in the range of 15.4 and 384.5 ng/L and 3.0 and 128.4 ng/g (wet weight), respectively. The bioaccumulation of the ΣLPhACs in wild fish tissues was generally in the order the liver > brain > gill > muscle. Among the target LPhACs, however, an interspecies difference in tissue distribution was evident for erythromycin. The bioaccumulation factors of LPhACs in the liver and brain, the two major targeted storage sites for toxicants, exhibited an obvious negative correlation with the aquatic concentrations (P < 0.05). Finally, risk quotients posed by pharmaceuticals were assessed by comprehensive and comparative methods for different aquatic organisms (algae, daphnids and fish). The overall relative order of susceptibility was estimated to be algae > daphnids > fish. However, the results indicate that diclofenac, ibuprofen and 17α-ethinylestradiol each posed chronic risks for high trophic level organisms (fish). In all of the risk assessments, erythromycin was found to be the most harmful for the most sensitive algae group. In this work, however, the total BAF and toxicological interactions of pharmaceuticals were not performed due to the lack of metabolite information and combined toxicity data, which represents a major hindrance to the effective risk assessment of pharmaceuticals.
    Science of The Total Environment 04/2015; 511. DOI:10.1016/j.scitotenv.2014.12.033 · 4.10 Impact Factor