A General SNP-Based Molecular Barcode for Plasmodium Falciparum Identification and Tracking

Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
Malaria Journal (Impact Factor: 3.11). 10/2008; 7(1):223. DOI: 10.1186/1475-2875-7-223
Source: PubMed


Single nucleotide polymorphism (SNP) genotyping provides the means to develop a practical, rapid, inexpensive assay that will uniquely identify any Plasmodium falciparum parasite using a small amount of DNA. Such an assay could be used to distinguish recrudescence from re-infection in drug trials, to monitor the frequency and distribution of specific parasites in a patient population undergoing drug treatment or vaccine challenge, or for tracking samples and determining purity of isolates in the laboratory during culture adaptation and sub-cloning, as well as routine passage.
A panel of twenty-four SNP markers has been identified that exhibit a high minor allele frequency (average MAF > 35%), for which robust TaqMan genotyping assays were constructed. All SNPs were identified through whole genome sequencing and MAF was estimated through Affymetrix array-based genotyping of a worldwide collection of parasites. These assays create a "molecular barcode" to uniquely identify a parasite genome.
Using 24 such markers no two parasites known to be of independent origin have yet been found to have the same allele signature. The TaqMan genotyping assays can be performed on a variety of samples including cultured parasites, frozen whole blood, or whole blood spotted onto filter paper with a success rate > 99%. Less than 5 ng of parasite DNA is needed to complete a panel of 24 markers. The ability of this SNP panel to detect and identify parasites was compared to the standard molecular methods, MSP-1 and MSP-2 typing.
This work provides a facile field-deployable genotyping tool that can be used without special skills with standard lab equipment, and at reasonable cost that will unambiguously identify and track P. falciparum parasites both from patient samples and in the laboratory.

Download full-text


Available from: Rachel Daniels,
  • Source
    • "Genotyping was performed as described in [21], with modifications. Seven SNPs were assessed using a PCR-LDR-FMA (PCR-Ligase Detection Reaction-Fluorescence Microspheres Assay). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria incidence worldwide has steadily declined over the past decades. Consequently, increasingly more countries will proceed from control to elimination. The malaria distribution in low incidence settings appears patchy, and local transmission hotspots are a continuous source of infection. In this study, species-specific clusters and associated risk factors were identified based on malaria prevalence data collected in the north-east of Cambodia. In addition, Plasmodium falciparum genetic diversity, population structure and gene flows were studied. In 2012, blood samples from 5793 randomly selected individuals living in 117 villages were collected from Ratanakiri province, Cambodia. Malariometric data of each participant were simultaneously accumulated using a standard questionnaire. A two-step PCR allowed for species-specific detection of malaria parasites, and SNP-genotyping of P. falciparum was performed. SaTScan was used to determine species-specific areas of elevated risk to infection, and univariate and multivariate risk analyses were carried out. PCR diagnosis found 368 positive individuals (6.4%) for malaria parasites, of which 22% contained mixed species infections. The occurrence of these co-infections was more frequent than expected. Specific areas with elevated risk of infection were detected for all Plasmodium species. The clusters for Falciparum, Vivax and Ovale malaria appeared in the north of the province along the main river, while the cluster for Malariae malaria was situated elsewhere. The relative risk to be a malaria parasite carrier within clusters along the river was twice that outside the area. The main risk factor associated with three out of four malaria species was overnight stay in the plot hut, a human behaviour associated with indigenous farming. Haplotypes did not show clear geographical population structure, but pairwise Fst value comparison indicated higher parasite flow along the river. Spatial aggregation of malaria parasite carriers, and the identification of malaria species-specific risk factors provide key insights in malaria epidemiology in low transmission settings, which can guide targeted supplementary interventions. Consequently, future malaria programmes in the province should implement additional specific policies targeting households staying overnight at their farms outside the village, in addition to migrants and forest workers.
    Malaria Journal 09/2014; 13(1):387. DOI:10.1186/1475-2875-13-387 · 3.11 Impact Factor
  • Source
    • "Plasmodium falciparum DNA was extracted from DBS samples using the Promega DNA IQ Casework Pro Kit for Maxwell 16 (Promega Corp., Madison, WI, USA) following the manufacturer’s instructions. Real-time DNA quantification was performed on resultant sample extracts to determine DNA content, as described by Daniels et al.[6]. Briefly, 3 μL of each extracted sample was used to determine the parasite template concentration in triplicate using a TaqMan assay designed to amplify PF3D7_0718800 (formerly PF07_0076), a single-copy conserved protein with unknown function. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is receding in many endemic countries with intervention scale -up against the disease. However, this resilient scourge may persist in low-grade submicroscopic infections among semi-immune members of the population, and be poised for possible resurgence, creating challenges for detection and assessment of intervention impact. Parasite genotyping methods, such as the molecular barcode, can identify specific malaria parasite types being transmitted and allow tracking and evaluation of parasite population structure changes as interventions are applied. This current study demonstrates application of pre -amplification methods for successful detection and genotyping of residual Plasmodium falciparum infections during a dramatic malarial decline. The study was a prospective cross-sectional design and based on a 2,000 sq km vicinity of Macha Mission Hospital in southern Zambia. Willing and predominantly asymptomatic residents of all ages were screened for malaria by microscopy during the 2005 and 2008 transmission seasons, with simultaneous collection of dried blood spots (DBS) on filter paper, and extraction of Plasmodium falciparum DNA was performed. Plasmodium falciparum infections were genotyped using a 24 SNP-based molecular barcode assay using real-time PCR. Submicroscopic parasitaemia samples were subjected to pre-amplification using TaqMan PreAmp Master Mix following the manufacturer's instructions be fo re SNP barcode a na lysis. There was a dramatic decline of malaria between 2005 and 2008, and the geometric mean pa ra site density (95% CI) fell from 704/muL (390 -1,271) in 2005 to 39/muL (23 -68) in 2008, culminating in a large proportion of submicroscopic infections of which 90% failed to yield ample DNA for standard molecular characterization among 2008 samples. Pre -amplification enabled successful detection and genotyping of 74% of these low-grade reservoir infections, overall, compared to 54% that were detectable before pre -amplification (p <0.0005, n = 84). Furthermore, nine samples negative for parasites by microscopy and standard quantitative PCR amplification were positive after pre -amplification. Pre-amplification allows analysis of an otherwise undetectable parasite population and may be instrumental for parasites identification, tracking and assessing the impact of interventions on parasite populations during malaria control and elimination programmes when parasitaemia is expected to decline to submicroscopic levels.
    Malaria Journal 03/2014; 13(1):89. DOI:10.1186/1475-2875-13-89 · 3.11 Impact Factor
  • Source
    • "single nucleotide polymorphisms (SNPs) need to be developed and tested that would assist in such fine-level tracking of parasite isolates in an elimination setting. Such studies have already been done for P. falciparum[66]. Therefore, equally sensitive tools for tracking of P. vivax remains as a priority research need for all elimination settings. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is one of the most important tropical diseases that has caused devastation throughout the history of mankind. Malaria eradication programmes in the past have had many positive effects but failed to wipe out malaria from most tropical countries, including Sri Lanka. Encouraged by the impressive levels of reduction in malaria case numbers during the past decade, Sri Lanka has launched a programme to eliminate malaria by year 2014. This article reviews the historical milestones associated with the malaria eradication programme that failed subsequently and the events that led to the launch of the ongoing malaria elimination plans at national-level and its strategies that are operational across the entire country. The existing gaps in knowledge are also discussed together with the priority areas for research to fill in these gaps that are posing as challenges to the envisaged goal of wiping out malaria from this island nation.
    Malaria Journal 02/2014; 13(1):59. DOI:10.1186/1475-2875-13-59 · 3.11 Impact Factor
Show more