Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition

Victoria University of Wellington, New Zealand
PLoS ONE (Impact Factor: 3.53). 02/2008; 3(10):e3526. DOI: 10.1371/journal.pone.0003526
Source: PubMed

ABSTRACT Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.
We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.
This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous research has found accumulating evidence for atypical reward processing in autism spectrum disorders (ASD), particularly in the context of social rewards. Yet, this line of research has focused largely on positive social reinforcement, while little is known about the processing of negative reinforcement in individuals with ASD. The present study examined neural responses to social negative reinforcement (a face displaying negative affect) and non-social negative reinforcement (monetary loss) in children with ASD relative to typically developing children, using functional magnetic resonance imaging (fMRI). We found that children with ASD demonstrated hypoactivation of the right caudate nucleus while anticipating non-social negative reinforcement and hypoactivation of a network of frontostriatal regions (including the nucleus accumbens, caudate nucleus, and putamen) while anticipating social negative reinforcement. In addition, activation of the right caudate nucleus during non-social negative reinforcement was associated with individual differences in social motivation. These results suggest that atypical responding to negative reinforcement in children with ASD may contribute to social motivational deficits in this population.
    Journal of Neurodevelopmental Disorders 01/2015; 7(1):12. DOI:10.1186/s11689-015-9107-8 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atypical self-processing is an emerging theme in autism research, suggested by lower self-reference effect in memory, and atypical neural responses to visual self-representations. Most research on physical self-processing in autism uses visual stimuli. However, the self is a multimodal construct, and therefore, it is essential to test self-recognition in other sensory modalities as well. Self-recognition in the auditory modality remains relatively unexplored and has not been tested in relation to autism and related traits. This study investigates self-recognition in auditory and visual domain in the general population and tests if it is associated with autistic traits. Thirty-nine neurotypical adults participated in a two-part study. In the first session, individual participant's voice was recorded and face was photographed and morphed respectively with voices and faces from unfamiliar identities. In the second session, participants performed a 'self-identification' task, classifying each morph as 'self' voice (or face) or an 'other' voice (or face). All participants also completed the Autism Spectrum Quotient (AQ). For each sensory modality, slope of the self-recognition curve was used as individual self-recognition metric. These two self-recognition metrics were tested for association between each other, and with autistic traits. Fifty percent 'self' response was reached for a higher percentage of self in the auditory domain compared to the visual domain (t = 3.142; P < 0.01). No significant correlation was noted between self-recognition bias across sensory modalities (τ = -0.165, P = 0.204). Higher recognition bias for self-voice was observed in individuals higher in autistic traits (τ AQ = 0.301, P = 0.008). No such correlation was observed between recognition bias for self-face and autistic traits (τ AQ = -0.020, P = 0.438). Our data shows that recognition bias for physical self-representation is not related across sensory modalities. Further, individuals with higher autistic traits were better able to discriminate self from other voices, but this relation was not observed with self-face. A narrow self-other overlap in the auditory domain seen in individuals with high autistic traits could arise due to enhanced perceptual processing of auditory stimuli often observed in individuals with autism.
    Molecular Autism 01/2015; 6:20. DOI:10.1186/s13229-015-0016-1 · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recognition of self-face is a unique and complex phenomenon in many aspects, including its associated perceptual integration process, its emergence during development, and its socio-motivational effect. This may explain the failure of classical attempts to identify the cortical areas specifically responsive to self-face and designate them as a unique system related to ‘self’. Neuroimaging findings regarding self-face recognition seem to be explained comprehensively by a recent forward-model account of the three categories of self: the physical, interpersonal, and social selves. Self-face-specific activation in the sensory and motor association cortices may reflect cognitive scrutiny due to prediction error or task-induced top-down attention in the physical internal schema related to the self-face. Self-face-specific deactivation in some amodal association cortices in the dorsomedial frontal and lateral posterior cortices may reflect adaptive suppression of the default recruitment of the social-response system during face recognition. Self-face-specific activation under a social context in the ventral aspect of the medial prefrontal cortex and the posterior cingulate cortex may reflect cognitive scrutiny of the internal schema related to the social value of the self. The multi-facet nature of self-face-specific activation may hold potential as the basis for a multi-dimensional diagnostic tool for the cognitive system.
    Neuroscience Research 10/2014; 90. DOI:10.1016/j.neures.2014.10.002 · 2.15 Impact Factor

Full-text (3 Sources)

Available from
Jun 3, 2014