Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis

Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California. Electronic address: .
JACC. Cardiovascular imaging (Impact Factor: 6.99). 01/2013; 6(1):64-71. DOI: 10.1016/j.jcmg.2012.07.017
Source: PubMed

ABSTRACT OBJECTIVES: The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. BACKGROUND: Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. METHODS: The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. RESULTS: The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). CONCLUSIONS: Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aortic disease is routinely monitored with anatomic imaging, but until the recent advent of 3-directional phase contrast MRI (4D) flow, blood flow abnormalities have gone undetected. 4D flow measures aortic hemodynamic markers quickly. Qualitative flow visualization has spurred the investigation of new quantitative markers. Flow displacement and wall shear stress can quantify the effects of valve-related aortic flow abnormalities. Markers of turbulent and viscous energy loss approximate the increased energetic burden on the ventricle in disease states. This article discusses magnetic resonance flow imaging and highlights new flow-related markers in the context of aortic valve disease, valve-related aortic disease, and aortic wall disease. Copyright © 2015 Elsevier Inc. All rights reserved.
    Magnetic Resonance Imaging Clinics of North America 02/2015; 23(1):15-23. DOI:10.1016/j.mric.2014.08.006 · 0.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flow displacement quantifies eccentric flow, a potential risk factor for aneurysms in the ascending aorta, but only at a single anatomic location. The aim of this study is to extend flow displacement analysis to 3D in patients with aortic and aortic valve pathologies. 43 individuals were studied with 4DFlow MRI in 6 groups: healthy, tricuspid aortic valve (TAV) with aortic stenosis (AS) but no dilatation, TAV with dilatation but no AS, and TAV with both AS and dilatation, BAV without AS or dilatation, BAV without AS but with dilation. The protocol was approved by our institutional review board, and informed consent was obtained. Flow displacement was calculated for multiple planes along the ascending aorta, and 2D and 3D analyses were compared. Good correlation was found between 2D flow displacement and both maximum and average 3D values (r>0.8). Healthy controls had significantly lower flow displacement values with all approaches (p<0.05). The highest flow displacement was seen with stenotic TAV and aortic dilation (0.24±0.02 with maximum flow displacement). The 2D approach underestimated the maximum flow displacement by more than 20% in 13 out of 36 patients (36%). The extended 3D flow displacement analysis offers a more comprehensive quantitative evaluation of abnormal systolic flow in the ascending aorta than 2D analysis. Differences between patient subgroups are better demonstrated, and maximum flow displacement is more reliable assessed. Copyright © 2015. Published by Elsevier Inc.
    Magnetic Resonance Imaging 02/2015; DOI:10.1016/j.mri.2015.02.020 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with repaired or palliated right heart congenital heart disease (CHD) are often left with residual lesions that progress and can result in significant morbidity. However, right ventricular-pulmonary arterial evaluation and the timing of reintvervention is still subjective. Currently, it relies on symptomology, or RV imaging-based metrics from echocardiography or MR derived parameters including right ventricular (RV) ejection fraction (EF), end-systolic pressure (ESP), and end-diastolic volume (EDV). However, the RV is coupled to the pulmonary vasculature, and they are not typically evaluated together. For example, the dysfunctional right ventricular-pulmonary circulation (RV-PC) adversely affects the RV myocardial performance resulting in decreased efficiency. Therefore, comprehensive hemodynamic assessment should incorporate changes in RV-PC and energy efficiency for CHD patients.
    BioMedical Engineering OnLine 01/2015; 14 Suppl 1:S8. DOI:10.1186/1475-925X-14-S1-S8 · 1.75 Impact Factor


Available from
May 30, 2014