Article

Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity.

Institut National de la Santé et de la Recherche Médicale, U895, Team 8, Hepatic Complications in Obesity, Nice, France.
Diabetes (Impact Factor: 7.9). 11/2008; 58(1):125-33. DOI: 10.2337/db08-0400
Source: PubMed

ABSTRACT Osteopontin (OPN) plays an important role in the development of insulin resistance and liver complications in dietary murine models. We aimed to determine the expression pattern of OPN and its receptor CD44 in obese patients and mice according to insulin resistance and liver steatosis.
OPN and CD44 expressions were studied in 52 morbidly obese patients and in mice. Cellular studies were performed in HepG2 cells.
Hepatic OPN and CD44 expressions were strongly correlated with liver steatosis and insulin resistance in obese patients and mice. This increased OPN expression could be due to the accumulation of triglycerides, since fat loading in HepG2 promotes OPN expression. In contrast, OPN expression in adipose tissue (AT) was enhanced independently of insulin resistance and hepatic steatosis in obese patients. The elevated OPN expression in AT was paralleled with the AT macrophage infiltration, and both phenomena were reversed after weight loss. The circulating OPN level was slightly elevated in obese patients and was not related to liver steatosis. Further, AT did not appear to secrete OPN. In contrast, bariatric surgery-induced weight loss induced a strong increase in circulating OPN.
The modestly elevated circulating OPN levels in morbidly obese patients were not related to liver steatosis and did not appear to result from adipose tissue secretion. In subcutaneous AT, expression of OPN was directly related to macrophage accumulation independently from liver complications. In contrast, hepatic OPN and CD44 expressions were related to insulin resistance and steatosis, suggesting their local implication in the progression of liver injury.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: A review of published data addressing hepatic histopathological, metabolical, and functional changes following gastric banding, sleeve gastrectomy, gastric bypass surgery, and biliopancreatic with duodenal switch surgeries on nonalcoholic fatty liver disease (NAFLD). NAFLD is currently the most common chronic liver disease. Owing to the strong relationship between obesity and NAFLD, the idea of weight reduction as a method to treat NAFLD has rapidly emerged. Bariatric surgery has proved to be the most efficient method for weight reduction; hence, their beneficial effects on NAFLD have been evaluated by several studies. A literature review of published data was performed during the years 2012-2014 using PubMed with the following key words: Bariatric, NAFLD, steatosis, sleeve gastrectomy, gastric bypass, gastric banding, biliopancreatic diversion with duodenal switch, obesity, and insulin resistance (IR). Exclusion criteria were non-English articles and inherited NAFLD, pregnancy-induced NAFLD, and children. The majority of published data are in favor of indicating that bariatric surgeries improve the histologic and metabolic changes associated with NAFLD. The suggested mechanisms are: The reversal of IR, reduction of inflammatory markers, and improved histological features of NAFLD. Accordingly, bariatric surgeries are potentially one of the future methods in treating patients with morbid obesity and NAFLD. However, some questions remain unanswered, such as whether timing of surgery, type of surgery most effective, and whether bariatric surgeries are capable of curing the disease. Long-term and well-designed prospective studies are needed to address these issues.
    Saudi journal of gastroenterology : official journal of the Saudi Gastroenterology Association. 09/2014; 20(5):270-278.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.
    PLoS ONE 01/2014; 9(5):e98398. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver (NAFLD), particularly its more aggressive form, nonalcoholic steatohepatitis (NASH), is associated with hepatic insulin resistance. Osteocalcin, a protein secreted by osteoblast cells in bone, has recently emerged as an important metabolic regulator with insulin-sensitizing properties. In humans, osteocalcin levels are inversely associated with liver disease. We thus hypothesized that osteocalcin may attenuate NASH and examined the effects of osteocalcin treatment in middle-aged (12-month-old) male Ldlr(-/-) mice, which were fed a "Western-style" high-fat, high-cholesterol diet (WHFD) for 12 weeks to induce metabolic syndrome and NASH. Mice were treated with osteocalcin (4.5ng/hr) or vehicle for the diet duration. Osteocalcin treatment not only protected against WHFD-induced insulin resistance, but substantially reduced multiple NASH components, including steatosis, ballooning degeneration, and fibrosis, with an overall reduction in NAFLD activity scores. Further, osteocalcin robustly reduced expression of pro-inflammatory and pro-fibrotic genes (Cd68, Mcp1, Spp1 and Col1a2) in liver and suppressed inflammatory gene expression in white adipose tissue. Conclusion: These results suggest osteocalcin inhibits NASH development by targeting inflammatory and fibrotic processes.
    Endocrinology 10/2014; · 4.72 Impact Factor

Full-text (2 Sources)

Download
33 Downloads
Available from
May 26, 2014