Robustness and Epistasis in the C-elegans Vulval Signaling Network Revealed by Pathway Dosage Modulation

Institut National de la Santé et de la Recherche Médicale U1024, 46 rue d'Ulm, 75230 Paris Cedex 05, France.
Developmental Cell (Impact Factor: 10.37). 01/2013; 24(1):64-75. DOI: 10.1016/j.devcel.2012.12.001
Source: PubMed

ABSTRACT Biological systems may perform reproducibly to generate invariant outcomes, despite external or internal noise. One example is the C. elegans vulva, in which the final cell fate pattern is remarkably robust. Although this system has been extensively studied and the molecular network underlying cell fate specification is well understood, very little is known in quantitative terms. Here, through pathway dosage modulation and single molecule fluorescence in situ hybridization, we show that the system can tolerate a 4-fold variation in genetic dose of the upstream signaling molecule LIN-3/epidermal growth factor (EGF) without phenotypic change in cell fate pattern. Furthermore, through tissue-specific dosage perturbations of the EGF and Notch pathways, we determine the first-appearing patterning errors. Finally, by combining different doses of both pathways, we explore how quantitative pathway interactions influence system behavior. Our results highlight the feasibility and significance of launching experimental studies of robustness and quantitative network analysis in genetically tractable, multicellular eukaryotes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Caenorhabditis elegans hermaphrodite vulva is one of the best studied models for signal transduction and cell fate determination during organogenesis. Systematic forward genetic screens have identified a complex and highly interconnected signaling network formed by the conserved EGFR, NOTCH, and WNT signaling pathways that specifies an invariant pattern of cell fates among the six vulval precursor cells (VPCs). Multiple inhibitory interactions between the EGFR and NOTCH pathways ensure the selection of a single 1° VPC that is always flanked by two 2° VPCs thanks to lateral NOTCH signaling. Building on this 'central dogma' of cell fate specification, scientists have investigated a broad spectrum of novel questions that are summarized in this review. For example, vulval development is a unique model to study the intracellular trafficking of signaling molecules, such as NOTCH or EGFR, to investigate the interactions between the cell cycle and cell fate specification pathways, and to observe epithelial tube morphogenesis and cell invasion at single-cell resolution. Finally, computer scientists have integrated the experimental data into mathematical and state-based 'in silico' models of vulval development, allowing them to test the completeness and limits of our current understanding. Copyright © 2015. Published by Elsevier Ltd.
    Current Opinion in Genetics & Development 02/2015; 32C:1-9. DOI:10.1016/j.gde.2015.01.006 · 8.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we present an automated microscope capable of 3D multi-color single molecule localization of individual messenger RNA molecules in a wide range of cell types. We have implemented astigmatic imaging with a cylindrical lens to improve z-localization, and a maximum likelihood estimator on a graphics processing unit to improve localization precision and speed. This microscope will aid in gene expression analysis by its capability to perform high throughput imaging of thick cells and tissues while still maintaining sufficient z resolution to resolve single RNA transcripts in three dimensions. Enhanced z-localization allows for resolving membrane localized and co-localized transcripts.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2014; DOI:10.1117/12.2038197 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Gene-gene interactions (G×G) are important to study because of their extensiveness in biological systems and their potential in explaining missing heritability of complex traits. In this work, we propose a new similarity-based test to assess G×G at the gene level, which permits the study of epistasis at biologically functional units with amplified interaction signals. Methods: Under the framework of gene-trait similarity regression (SimReg), we propose a gene-based test for detecting G×G. SimReg uses a regression model to correlate trait similarity with genotypic similarity across a gene. Unlike existing gene-level methods based on leading principal components (PCs), SimReg summarizes all information on genotypic variation within a gene and can be used to assess the joint/interactive effects of two genes as well as the effect of one gene conditional on another. Results: Using simulations and a real data application to the Warfarin study, we show that the SimReg G×G tests have satisfactory power and robustness under different genetic architecture when compared to existing gene-based interaction tests such as PC analysis or partial least squares. A genome-wide association study with approx. 20,000 genes may be completed on a parallel computing system in 2 weeks. © 2014 S. Karger AG, Basel.
    Human Heredity 06/2014; 78(1):17-26. DOI:10.1159/000360161 · 1.64 Impact Factor