Article

Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: A panel study

Environmental Health (Impact Factor: 2.71). 01/2013; 12(1):7. DOI: 10.1186/1476-069X-12-7
Source: PubMed

ABSTRACT Background
While air pollution exposures have been linked to cardiovascular outcomes, the contribution from acute gas and particle traffic-related pollutants remains unclear. Using a panel study design with repeated measures, we examined associations between personal exposures to traffic-related air pollutants in Mexico City and changes in heart rate variability (HRV) in a population of researchers aged 22 to 56 years.

Methods
Participants were monitored for approximately 9.5 hours for eight days while operating a mobile laboratory van designed to characterize traffic pollutants while driving in traffic and “chasing” diesel buses. We examined the association between HRV parameters (standard deviation of normal-to-normal intervals (SDNN), power in high frequency (HF) and low frequency (LF), and the LF/HF ratio) and the 5-minute maximum (or average in the case of PM2.5) and 30-, 60-, and 90-minute moving averages of air pollutants (PM2.5, O3, CO, CO2, NO2, NOx, and formaldehyde) using single- and two-pollutant linear mixed-effects models.

Results
Short-term exposure to traffic-related emissions was associated with statistically significant acute changes in HRV. Gaseous pollutants – particularly ozone – were associated with reductions in time and frequency domain components (α = 0.05), while significant positive associations were observed between PM2.5 and SDNN, HF, and LF. For ozone and formaldehyde, negative associations typically increased in magnitude and significance with increasing averaging periods. The associations for CO, CO2, NO2, and NOx were similar with statistically significant associations observed for SDNN, but not HF or LF. In contrast, PM2.5 increased these HRV parameters.

Conclusions
Results revealed an association between traffic-related PM exposures and acute changes in HRV in a middle-aged population when PM exposures were relatively low (14 μg/m3) and demonstrate heterogeneity in the effects of different pollutants, with declines in HRV – especially HF – with ozone and formaldehyde exposures, and increases in HRV with PM2.5 exposure. Given that exposure to traffic-related emissions is associated with increased risk of cardiovascular morbidity and mortality, understanding the mechanisms by which traffic-related emissions can cause cardiovascular disease has significant public health relevance.

0 Followers
 · 
226 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background For many individuals, daily commuting activities on roadways account for a substantial proportion of total exposure, as well as peak-level exposures, to traffic-related air pollutants (TRAPS) including ultrafine particles, but the health impacts of these exposures are not well-understood. We sought to determine if exposure to TRAPs particles during commuting causes acute oxidative stress in the respiratory tract or changes in heart rate variability (HRV), a measure of autonomic activity.Methods We conducted a randomized, cross-over trial in which twenty-one young adults took two 1.5-hr rides in a passenger vehicle in morning rush-hour traffic. The subjects wore a powered-air-purifying respirator, and were blinded to high-efficiency particulate air (HEPA) filtration during one of the rides. At time points before and after the rides, we measured HRV and markers of oxidative stress in exhaled breath condensate (EBC) including nitrite, the sum of nitrite and nitrate, malondialdehyde, and 8-isoprostane. We used mixed linear models to evaluate the effect of exposure on EBC and HRV outcomes, adjusting for pre-exposure response levels. We used linear models to examine the effects of particle concentrations on EBC outcomes at post-exposure time points.ResultsMean EBC nitrite and the sum of nitrite and nitrate were increased from baseline at immediately post-exposure comparing unfiltered to filtered rides (2.11 ¿M vs 1.70 ¿M, p¿=¿0.02 and 19.1 ¿M vs 10.0 ¿M, p¿=¿0.02, respectively). Mean EBC malondialdehyde (MDA) concentrations were about 10% greater following the unfiltered vs. filtered exposures, although this result was not statistically significant. We found no significant associations between exposure to traffic particles and HRV outcomes at any of the time points. At immediately post-exposure, an interquartile range increase in particle number concentration was associated with statistically significant increases in nitrite (99.4%, 95% CI 32.1% to 166.7%) and nitrite¿+¿nitrate (75.7%, 95% CI 21.5% to 130.0%).Conclusions Increases in markers of oxidative stress in EBC may represent early biological responses to widespread exposures to TRAPs particles that affect passengers in vehicles on heavily trafficked roadways.
    Particle and Fibre Toxicology 11/2014; 11(1):45. DOI:10.1186/s12989-014-0045-5 · 6.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Traffic-related air pollution may contribute to cardiovascular morbidity. In urban areas, exposures during physical activity are of interest owing to increased breathing rates and close proximity to vehicle emissions. Methods: We conducted a cross-over study among 53 healthy non-smoking women in Montreal, Canada during the summer of 2013. Women were exposed to traffic pollutants for 2-hours on three separate occasions during cycling on high and low-traffic routes as well as indoors. Personal air pollution exposures (PM2.5, ultrafine particles (UFP), black carbon, NO2, and O3) were evaluated along each route and linear mixed-effects models with random subject intercepts were used to estimate the impact of air pollutants on acute changes in blood pressure, heart rate variability, and micro-vascular function in the hours immediately following exposure. Single and multi-pollutant models were examined and potential effect modification by mean regional air pollution concentrations (PM2.5, NO2, and O3) was explored for the 24-hour and 5-day periods preceding exposure. Results: In total, 143 exposure routes were completed. Each interquartile increase (10,850/cm3) in UFP exposure was associated with a 4.91% (95% CI: -9.31, -0.512) decrease in reactive hyperemia index (a measure of micro-vascular function) and each 24 ppb increase in O3 exposure corresponded to a 2.49% (95% CI: 0.141, 4.84) increase in systolic blood pressure and a 3.26% (95% CI: 0.0117, 6.51) increase in diastolic blood pressure 3-hours after exposure. Personal exposure to PM2.5 was associated with decreases in HRV measures reflecting parasympathetic modulation of the heart and regional PM2.5 concentrations modified these relationships (p?<?0.05). In particular, stronger inverse associations were observed when regional PM2.5 was higher on the days prior to the study period. Regional PM2.5 also modified the impact of personal O3 on the standard deviation of normal to normal intervals (SDNN) (p?<?0.05): a significant inverse relationship was observed when regional PM2.5 was low prior to study periods and a significant positive relationship was observed when regional PM2.5 was high. Conclusion: Exposure to traffic pollution may contribute to acute changes in blood pressure, autonomic and micro-vascular function in women. Regional air pollution concentrations may modify the impact of these exposures on autonomic function.
    Particle and Fibre Toxicology 12/2014; 11(1). DOI:10.1186/s12989-014-0070-4 · 6.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/minute) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 meter buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R2=0.24) and black carbon (R2=0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.
    Environmental Science and Technology 12/2014; 49(1). DOI:10.1021/es504043a · 5.48 Impact Factor

Full-text (3 Sources)

Download
34 Downloads
Available from
May 21, 2014