Article

A Drosophila model of high sugar diet-induced cardiomyopathy.

Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America.
PLoS Genetics (Impact Factor: 8.17). 01/2013; 9(1):e1003175. DOI: 10.1371/journal.pgen.1003175
Source: PubMed

ABSTRACT Diets high in carbohydrates have long been linked to progressive heart dysfunction, yet the mechanisms by which chronic high sugar leads to heart failure remain poorly understood. Here we combine diet, genetics, and physiology to establish an adult Drosophila melanogaster model of chronic high sugar-induced heart disease. We demonstrate deterioration of heart function accompanied by fibrosis-like collagen accumulation, insulin signaling defects, and fat accumulation. The result was a shorter life span that was more severe in the presence of reduced insulin and P38 signaling. We provide evidence of a role for hexosamine flux, a metabolic pathway accessed by glucose. Increased hexosamine flux led to heart function defects and structural damage; conversely, cardiac-specific reduction of pathway activity prevented sugar-induced heart dysfunction. Our data establish Drosophila as a useful system for exploring specific aspects of diet-induced heart dysfunction and emphasize enzymes within the hexosamine biosynthetic pathway as candidate therapeutic targets.

0 Followers
 · 
163 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Drosophila heart has gained considerable traction as a model of cardiac development and physiology. Previously we described a semiautomatic optical heartbeat analysis (SOHA) method for quantifying functional parameters from the fly heart that facilitated its use as an organ system and disease model. Here we present an extensively rewritten version of the original SOHA program that takes advantage of additional information contained in high-speed videos of beating hearts. Program updates allow more precise quantification of cardiac contractions, increase the signal-to-noise ratio, and reduce the overall cost and time required to analyze recordings. This new SOHA version permits relatively rapid and highly accurate determination of subphases of contraction and relaxation. Importantly, the improved functionality enables the calculation of novel physiological data, suggesting that the fly model system may also be practical for screening drugs and alleles that modulate cardiac repolarization and force production.
    BioTechniques 01/2014; 58(2):77-80. DOI:10.2144/000114255 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adult female mosquitoes rely on carbohydrate-rich plant nectars as their main source of energy. In the present study we tested whether the deprivation of a carbohydrate dietary source or the deprivation of both carbohydrate and water affects mosquito heart physiology. Intravital video imaging of Anopheles gambiae showed that, relative to sucrose fed mosquitoes, the deprivation of both sucrose and water for 24 h, but not the deprivation of sucrose alone, reduces the heart contraction rate. Measurement of the protein, carbohydrate and lipid content of mosquitoes in the three treatment groups did not explain this cardiac phenotype. However, while the deprivation of sucrose reduced mosquito weight and abdominal width, the deprivation of both sucrose and water reduced mosquito weight even further without augmenting the change in abdominal width, indirectly suggesting that starvation and dehydration reduces hemolymph pressure. Analysis of the mRNA levels of crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F and short neuropeptide F then suggested that these neuropeptides do not regulate the cardiac phenotype observed. However, relative to sucrose fed and sucrose deprived mosquitoes, the mRNA level of nitric oxide synthase (NOS) was significantly elevated in mosquitoes that had been deprived of both sucrose and water. Given that nitric oxide suppresses the heart rate of vertebrates and invertebrates, these data suggest a role for this free radical in modulating mosquito heart physiology. Copyright © 2015. Published by Elsevier Ltd.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ageing can be modulated by genetic as well as nutritional interventions. In female Drosophila melanogaster, lifespan is maximized at intermediate concentrations of sucrose as the carbohydrate source, and yeast as the protein source. Dampening the signal through the insulin/IGF signalling (IIS) pathway, by genetic ablation of median neurosecretory cells (mNSCs) that produce insulin-like peptides, extends lifespan and counteracts the detrimental effects of excess yeast. However, how IIS reduction impacts health on a high-sugar diet remains unclear. We find that, while the ablation of the mNSCs can extend lifespan and delay the age-related decline in the health of the neuromuscular system irrespective of the amount of dietary sugar, it cannot rescue the lifespan-shortening effects of excess sugar. On the other hand, ablation of mNSCs can prevent adult obesity resulting from excess sugar, and this effect appears independent from the canonical effector of IIS, dfoxo. Our study indicates that while treatments that reduce IIS have anti-ageing effects irrespective of dietary sugar, additional interventions may be required to achieve full benefits in humans, where excessive sugar consumption is a growing problem. At the same time, pathways regulated by IIS may be suitable targets for treatment of obesity.
    Proceedings of the Royal Society B: Biological Sciences 02/2015; 282(1800). DOI:10.1098/rspb.2014.1720 · 5.29 Impact Factor