Effectiveness of late gadolinium enhancement to improve outcomes prediction in patients referred for cardiovascular magnetic resonance after echocardiography

Journal of Cardiovascular Magnetic Resonance (Impact Factor: 4.56). 01/2013; 15(1):6. DOI: 10.1186/1532-429X-15-6
Source: PubMed


Echocardiography (echo) is a first line test to assess cardiac structure and function. It is not known if cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) ordered during routine clinical practice in selected patients can add additional prognostic information after routine echo. We assessed whether CMR improves outcomes prediction after contemporaneous echo, which may have implications for efforts to optimize processes of care, assess effectiveness, and allocate limited health care resources.

Methods and results
We prospectively enrolled 1044 consecutive patients referred for CMR. There were 38 deaths and 3 cardiac transplants over a median follow-up of 1.0 years (IQR 0.4-1.5). We first reproduced previous survival curve strata (presence of LGE and ejection fraction (EF) < 50%) for transplant free survival, to support generalizability of any findings. Then, in a subset (n = 444) with contemporaneous echo (median 3 days apart, IQR 1–9), EF by echo (assessed visually) or CMR were modestly correlated (R2 = 0.66, p < 0.001), and 30 deaths and 3 transplants occurred over a median follow-up of 0.83 years (IQR 0.29-1.40). CMR EF predicted mortality better than echo EF in univariable Cox models (Integrated Discrimination Improvement (IDI) 0.018, 95% CI 0.008-0.034; Net Reclassification Improvement (NRI) 0.51, 95% CI 0.11-0.85). Finally, LGE further improved prediction beyond EF as determined by hazard ratios, NRI, and IDI in all Cox models predicting mortality or transplant free survival, adjusting for age, gender, wall motion, and EF.

Among those referred for CMR after echocardiography, CMR with LGE further improves risk stratification of individuals at risk for death or death/cardiac transplant.

Download full-text


Available from: Stephen C Cook, Jan 06, 2014

Click to see the full-text of:

Article: Effectiveness of late gadolinium enhancement to improve outcomes prediction in patients referred for cardiovascular magnetic resonance after echocardiography

729.31 KB

See full-text
  • Source
    • "Messroghli, et al. have developed accurate T1 mapping techniques to be performed in a single breathhold [81-83], and Flett, et al. have studied alternative T1 mapping techniques and found an excellent correlation between diffuse fibrosis and the histological collagen volume fraction in patients with myocardial hypertrophy due to aortic stenosis or hypertrophic cardiomyopathy [84]. In patients with cardiomyopathy, the myocardial ECVF assessment has prognostic value beyond assessment of LVEF [85]. Whether similar prognostic value of the myocardial ECVF can be assessed in cancer survivors is an area of ongoing study. "
    [Show abstract] [Hide abstract]
    ABSTRACT: While cancer-free survival has improved over the past 20 years for many individuals with prostate, renal, breast, and hematologic malignancies, the increasingly recognized prevalence of cardiovascular (CV) events in cancer survivors has been an unintended consequence of many of the therapies that have improved these survival rates. The increase in CV events threatens to offset the improvement in cancer related survival. As a result, there is an emerging need to develop methods to identify those individuals treated for cancer at increased risk of cardiovascular events. With its inherent ability to characterize myocardial tissue and identify both cardiac and vascular dysfunction, cardiovascular magnetic resonance (CMR) has the potential to identify both subclinical and early clinical CV injury before the development of an overt catastrophic event such as a myocardial infarction, stroke, or premature cardiac death. Early identification provides an opportunity for the implementation of primary prevention strategies to prevent such events, thereby improving overall cancer survivorship and quality of life. This article reviews the etiology of CV events associated with cancer therapy and the unique potential of CMR to provide early diagnosis of subclinical CV injury related to the administration of these therapies.
    Journal of Cardiovascular Magnetic Resonance 07/2013; 15(1):66. DOI:10.1186/1532-429X-15-66 · 4.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There were 83 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2011, which is an 11% increase in the number of articles since 2010. The quality of the submissions continues to increase. The editors had been delighted with the 2010 JCMR Impact Factor of 4.33, although this fell modestly to 3.72 for 2011. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, we remain very pleased with the progress of the journal's impact over the last 5 years. Our acceptance rate is approximately 25%, and has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors feel it is useful to summarize the papers for the readership into broad areas of interest or theme, which we feel would be useful, so that areas of interest from the previous year can be reviewed in a single article in relation to each other and other recent JCMR articles [1]. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
    Journal of Cardiovascular Magnetic Resonance 11/2012; 14(1):78. DOI:10.1186/1532-429X-14-78 · 4.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Routine clinical use of novel free-breathing, motion-corrected, averaged late-gadolinium-enhancement (moco-LGE) cardiovascular MR may have advantages over conventional breath-held LGE (bh-LGE), especially in vulnerable patients. Methods and results: In 390 consecutive patients, we collected bh-LGE and moco-LGE with identical image matrix parameters. In 41 patients, bh-LGE was abandoned because of image quality issues, including 10 with myocardial infarction. When both were acquired, myocardial infarction detection was similar (McNemar test, P=0.4) with high agreement (κ=0.95). With artifact-free bh-LGE images, pixelwise myocardial infarction measures correlated highly (R(2)=0.96) without bias. Moco-LGE was faster, and image quality and diagnostic confidence were higher on blinded review (P<0.001 for all). During a median of 1.2 years, 20 heart failure hospitalizations and 18 deaths occurred. For bh-LGE, but not moco-LGE, inferior image quality and bh-LGE nonacquisition were linked to patient vulnerability confirmed by adverse outcomes (log-rank P<0.001). Moco-LGE significantly stratified risk in the full cohort (log-rank P<0.001), but bh-LGE did not (log-rank P=0.056) because a significant number of vulnerable patients did not receive bh-LGE (because of arrhythmia or inability to hold breath). Conclusions: Myocardial infarction detection and quantification are similar between moco-LGE and bh-LGE when bh-LGE can be acquired well, but bh-LGE quality deteriorates with patient vulnerability. Acquisition time, image quality, diagnostic confidence, and the number of successfully scanned patients are superior with moco-LGE, which extends LGE-based risk stratification to include patients with vulnerability confirmed by outcomes. Moco-LGE may be suitable for routine clinical use.
    Circulation Cardiovascular Imaging 04/2013; 6(3). DOI:10.1161/CIRCIMAGING.112.000022 · 5.32 Impact Factor
Show more