Olive oil and walnut breakfasts reduce the postprandial inflammatory response in mononuclear cells compared with a butter breakfast in healthy men.

The Lipids and Arteriosclerosis Unit, Reina Sofía University Hospital, University of Córdoba, CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain.
Atherosclerosis (Impact Factor: 3.71). 09/2008; 204(2):e70-6. DOI: 10.1016/j.atherosclerosis.2008.09.011
Source: PubMed

ABSTRACT Inflammation is crucial in all stages of atherosclerosis, and few studies have investigated the effect of dietary fat on markers of inflammation related to this disease during the postprandial period.
To evaluate the chronic effects of dietary fat on the postprandial expression of proinflammatory genes in peripheral blood mononuclear cells (PBMCs) in healthy subjects.
20 healthy men followed three different diets for 4 weeks each, according to a randomized crossover design: Western diet: 15% protein, 47% carbohydrates (CHO), 38% fat (22% saturated fatty acid (SFA)); Mediterranean diet: 15% protein, 47% CHO, 38% fat (24% monounsaturated fatty acid (MUFA)); CHO-rich and n-3 diet: 15% protein, 55% CHO, <30% fat (8% polyunsaturated fatty acid (PUFA)). After 12-h fast, volunteers were given a breakfast with a fat composition similar to that consumed in each of the diets-butter breakfast: 35% SFA; olive oil breakfast: 36% MUFA; walnut breakfast: 16% PUFA, 4% alpha-linolenic acid (LNA).
The butter breakfast induced a higher increase in tumor necrosis factor (TNF)-alpha messenger RNA (mRNA) expression than the olive oil or walnut breakfasts (P=0.014) in PBMCs. Moreover, we found a higher postprandial response in the mRNA of interleukin (IL)-6 with the intake of butter and olive oil breakfasts than with the walnut breakfast (P=0.025) in these cells. However, the effects of the three fatty breakfasts on the plasma concentrations of these proinflammatory parameters showed no significant differences (P=N.S.).
Consumption of a butter-enriched meal elicits greater postprandial expression of proinflammatory cytokine mRNA in PBMCs, compared to the olive oil and walnut breakfasts.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro studies rank walnuts (Juglans regia) among the plant foods high in antioxidant capacity, but whether the active constituents of walnuts are bioavailable to humans remains to be determined. The intention of this study was to examine the acute effects of consuming walnuts compared to refined fat on meal induced oxidative stress. At issue is whether the ellagitannins and tocopherols in walnuts are bioavailable and provide postprandial antioxidant protection. A randomized, crossover, and controlled-feeding study was conducted to evaluate a walnut test meal compared to one composed of refined ingredients on postprandial serum antioxidants and biomarkers of oxidative status in healthy adults (n = 16) with at least 1 week between testing sessions. Following consumption of a low phenolic diet for one day and an overnight fast, blood was sampled prior to the test meals and at intervals up to 24 hours post ingestion and analyzed for total phenols, malondiadehyde (MDA), oxidized LDL, ferric reducing antioxidant power (FRAP), hydrophilic and lipophilic oxygen radical absorbance capacity (ORAC), uric acid, catechins and urinary excretion of phenylacetate metabolites and of urolithin A. Mixed linear models demonstrated a diet effect (P < 0.001) for plasma gamma-tocopherol but not for alpha-tocopherol with the walnut meal. Following the walnut test meal, the incremental 5 hour area under the curve (AUC0-5h) was reduced 7.4% for MDA, increased 7.5% for hydrophilic and 8.5% for lipophilic ORAC and comparable for total phenols, FRAP and uric acid. Oxidized LDL was reduced at 2 hours after the walnut meal. Plasma concentrations of gallocatechin gallate (GCG), epicatechin gallate (ECG) and epicallocatechin gallate (EGCG) increased significantly at 1 hour after the walnut test meal. Quantities of urolithin-A excreted in the urine were significantly higher following the walnut meal. Compared to the refined control meal, the walnut meal acutely increased postprandial gamma-tocopherol and catechins and attenuated some measures of oxidative stress.
    Nutrition Journal 01/2014; 13(1):4. · 2.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to evaluate the potential association between dietary nutrients and alterations in DNA methylation in a set of five candidate genes, including CD14, Et-1, iNOS, HERV-w and TNFα, in a population of overweight/obese subjects. We evaluated possible associations between gene methylation and clinical blood parameters, including total cholesterol (TC), low- and high-density lipoprotein cholesterol (LDL-C and HDL-C), triglyceride and homocysteine levels. We employed validated methods to assess anthropometric, clinical and dietary data, as well as pyrosequencing to evaluate DNA methylation of the five candidate genes in 165 overweight/obese subjects. There was no association between body mass index and DNA methylation of the five candidate genes in this group of subjects. Positive associations were observed between TNFα methylation and blood levels of LDL-C (β = 0.447, p = 0.002), TC/HDL-C (β = 0.467, p = 0.001) and LDL-C/HDL-C (β = 0.445, p = 0.002), as well as between HERV-w methylation and dietary intakes of β-carotene (β = 0.088, p = 0.051) and carotenoids (β = 0.083, p = 0.029). TNFα methylation showed negative associations with dietary intakes of cholesterol (β = -0.278, p = 0.048), folic acid (β = -0.339, p = 0.012), β-carotene (β = -0.332, p = 0.045), carotenoids (β = -0.331, p = 0.015) and retinol (β = -0.360, p = 0.008). These results suggest a complex relationship among nutrient intake, oxidative stress and DNA methylation.
    Nutrients 10/2014; 6(10):4625-39. · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the molecular mechanisms by which phenolic compounds (phenols) in virgin olive oil reduce the postprandial inflammatory response with the aim of identifying the transcription factor involved and the downstream effects. Olive oil-based breakfasts prepared with virgin olive oil (VOO) with high (398 ppm), intermediate (149 ppm) and low (70 ppm) phenol content were administered to 49 metabolic syndrome patients following a randomized crossover design. The consumption of a high-phenol VOO-based breakfast limited the increase of lipopolysaccharide plasma levels, TLR4, and SOCS3 proteins (p < 0.001, p = 0.041 and p = 0.008, respectively), the activation of NF-κB (p = 0.016) and the IL6 (p = 0.007 and p = 0.048, low and intermediate oil, respectively), IL1B (p = 0.002, intermediate oil), and CXCL1 (p = 0.001) postprandial gene expression, in peripheral blood mononuclear cells, as compared with the consumption of a breakfast prepared with the same oil but with low or intermediate phenol content. Virgin olive oil phenolic compounds reduce the postprandial inflammatory response in association with postprandial plasma lipopolysaccharide levels.
    Food Chemistry 11/2014; 162:161–171. · 3.26 Impact Factor


Available from
May 21, 2014