Article

Different formats of imprinted polymers for determining organotin compounds in environmental samples.

Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense S/N, 28040 Madrid, Spain.
Journal of Environmental Management (Impact Factor: 3.06). 11/2008; 90 Suppl 1:S69-76. DOI: 10.1016/j.jenvman.2008.07.020
Source: PubMed

ABSTRACT Organotin compounds and their degradation products enter the environment mainly as a result of their use as biocides and antifouling paints. Analysis of these compounds in environmental samples has to be very sensitive and selective so that their concentrations corresponding to the low environmental target values can also be detected. Generally, analysis of a complex matrix leads to high interferences during the different process steps; clean-up procedures are recommended to overcome this problem. For the past many years, solid phase extraction by employing imprinted materials has been extensively used for many organic substances that are used for pre-concentration and clean-up purposes with excellent results. Here, we present three different imprinted polymers prepared via bulk, precipitation, and emulsion polymerization methods that use similar compositions. The synthesized polymer particles were characterized morphologically by employing scanning electron microscopy and Brunauer-Emmett-Teller analysis. Binding properties were calculated using the Langmuir-Freundlich isotherm. Depending on the properties of the materials, different analytical applications for complex matrices are proposed. These applications are mainly used on tributyltin and its degradation products for environmental analysis.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004–2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930–2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
    Journal of Molecular Recognition 06/2014; 27(6). · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract−Molecularly imprinted polymer (MIP) submicron/nanoscale beads selective for L-Phenylalanine (L-Phe) and D-Phe as well as non-imprinted beads were prepared by modified suspension polymerization involving agitation of the reaction mixture at high rotation speed under safe radical conditions. The effects of pH, template and concentration of racemate solution on the performance of the phenylalanine (Phe) imprinted polymeric submicron/nanoscale beads were studied. L-Phe-imprinted submicron/nanoscale beads prepared for the first time by modified suspension polymerization showed enhanced adsorption capacity and selectivity over those of D-Phe imprinted and non-imprinted beads. Maximum adsorption capacity, 0.35 mg/g, and selectivity, 1.62, of L-Phe imprinted submicron/nanoscale beads were higher than the adsorption capacities, 0.30 and 0.19 mg/g, and selectivities, 1.59 and 1.02, of D-Phe imprinted and non-imprinted submicron/nanoscale beads, respectively. FE-SEM analyses revealed that L- and D-Phe imprinted beads were larger (100 nm-1.5 μm) than non-imprinted nanobeads (100-800 nm). 13C CP-MAS NMR spectroscopy helped in correlating the bead sizes and the extent of reaction during polymerization. Similarly, FT-IR study was used for evaluation of structural characteristics of the prepared Phe-imprinted and non-imprinted beads. The preparation of Phe-imprinted submicron/nanoscale beads with improved adsorption and separation properties and the study of effect of template on the size and performance of the prepared beads are suitable from both economical and research point of view in MIP field.
    Korean Journal of Chemical Engineering 01/2011; 28:1936-1944. · 1.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have prepared core-shell magnetic molecularly imprinted polymer nanoparticles for recognition and extraction of tributyl tin (TBT). The use of particles strongly improves the imprinting effect and leads to fast adsorption kinetics and high adsorption capacities. The functional monomer acrylamide was grafted to the surface of Fe3O4 nanospheres in two steps, and MIP layers were then formed on the surface by creating a MIP layer on the surface consisting of poly(ethyleneglycol dimethacrylate) with a TBT template. The particles were characterized in terms of morphological, magnetic, adsorption, and recognition properties. We then have developed a method for the extraction of TBT from spiked mussel (Mytilidae), and its determination by liquid chromatography-tandem mass spectrometry. The method has a limit of detection of 1.0 ng g−1 (n = 5) of TBT, with a linear response between 5.0 and 1,000 ng g−1. The proposed method was successfully applied to the determination of trace TBT in marine food samples with recoveries in the range of 78.3–95.6 %. Figure The preparation procedures of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition and extraction of tributyl tin (TBT) in seafood
    Microchimica Acta 180(7-8). · 3.43 Impact Factor