Different formats of imprinted polymers for determining organotin compounds in environmental samples

Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense S/N, 28040 Madrid, Spain.
Journal of Environmental Management (Impact Factor: 2.72). 11/2008; 90 Suppl 1:S69-76. DOI: 10.1016/j.jenvman.2008.07.020
Source: PubMed

ABSTRACT Organotin compounds and their degradation products enter the environment mainly as a result of their use as biocides and antifouling paints. Analysis of these compounds in environmental samples has to be very sensitive and selective so that their concentrations corresponding to the low environmental target values can also be detected. Generally, analysis of a complex matrix leads to high interferences during the different process steps; clean-up procedures are recommended to overcome this problem. For the past many years, solid phase extraction by employing imprinted materials has been extensively used for many organic substances that are used for pre-concentration and clean-up purposes with excellent results. Here, we present three different imprinted polymers prepared via bulk, precipitation, and emulsion polymerization methods that use similar compositions. The synthesized polymer particles were characterized morphologically by employing scanning electron microscopy and Brunauer-Emmett-Teller analysis. Binding properties were calculated using the Langmuir-Freundlich isotherm. Depending on the properties of the materials, different analytical applications for complex matrices are proposed. These applications are mainly used on tributyltin and its degradation products for environmental analysis.

12 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have prepared core-shell magnetic molecularly imprinted polymer nanoparticles for recognition and extraction of tributyl tin (TBT). The use of particles strongly improves the imprinting effect and leads to fast adsorption kinetics and high adsorption capacities. The functional monomer acrylamide was grafted to the surface of Fe3O4 nanospheres in two steps, and MIP layers were then formed on the surface by creating a MIP layer on the surface consisting of poly(ethyleneglycol dimethacrylate) with a TBT template. The particles were characterized in terms of morphological, magnetic, adsorption, and recognition properties. We then have developed a method for the extraction of TBT from spiked mussel (Mytilidae), and its determination by liquid chromatography-tandem mass spectrometry. The method has a limit of detection of 1.0 ng g−1 (n = 5) of TBT, with a linear response between 5.0 and 1,000 ng g−1. The proposed method was successfully applied to the determination of trace TBT in marine food samples with recoveries in the range of 78.3–95.6 %. Figure The preparation procedures of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition and extraction of tributyl tin (TBT) in seafood
    Microchimica Acta 06/2013; 180(7-8). DOI:10.1007/s00604-013-0962-2 · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present work the efficiency of molecularly imprinted polymers (MIP) in analytical chemistry, especially for sample pretreatment and for trace element speciation, is discussed. Selectivity of MIP allows reduction of the analysis time and sample handling. Several bulk polymers following covalent and non-covalent strategies by using organotin compounds (OTC) as template molecules have been synthesized. The non-covalent polymer is an excellent approach to be used in solid phase extraction (MISPE) for sea waterorganotin compounds screening. High pre-concentration factors and quantitative recoveries were achieved. Both covalent and non-covalent polymers appeared as a very useful tool for matrix interference removal in complex environmental matrices such as oyster and mussel tissues and sediments. A combination of fast OTC extraction by using a focused ultrasonic probe and MISPE provides a good alternative for OTC determination. Finally, the use of the molecular imprinting technology has been employed to prepare a specific affinity chromatographic stationary phase (ACSP) for OTC speciation by LC-ICP-MS. Detection limits were similar to those obtained with other commercial and not specific stationary phases. These first findings can contribute in the future to propose new LC procedures based on the use of MIPs as an alternative to GC for OTC determination.
    Journal of Analytical Atomic Spectrometry 01/2009; 24(5). DOI:10.1039/b818370h · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular imprinting technology has been employed for the first time to prepare a specifically affinity chromatographic stationary phase for speciation purposes. Tributyltin has been chosen as the template molecule and the non-covalent approach has been applied. Three different polymerization methods have been evaluated: (i) a composite material, (ii) a polymer prepared via-Iniferter grafting; (iii) an emulsion polymer. Columns packed with different polymers have been evaluated by liquid chromatography (LC) coupled to inductively coupled plasma mass spectrometry (ICP-MS). The chromatographic conditions as well as the analytical characteristics of the developed method are discussed in this paper. Our findings have shown formation of specific cavities in the grafted Iniferter as well as in the emulsion polymers with the latter achieving resolution of four organotin compounds. Detection limits are similar to those obtained with commercial, but not specific, stationary phases (6 pg for monobutyltin, MBT; 10 pg for both tributyltin, TBT, and triphenyltin, TPhT; and 20 pg for dibutyltin, DBT). The main advantage of this proposed stationary phase is that good recovery is obtained for all species, including MBT. Baseline resolution for TBT and TPhT has also been obtained. The high selectivity of this column prevents matrix interferences. The method has been validated by analyzing two biota reference materials (ERM-CE477 mussel tissue and T-38 oyster tissue).
    Journal of Chromatography A 05/2010; 1217(20):3400-7. DOI:10.1016/j.chroma.2010.03.007 · 4.17 Impact Factor
Show more