Nuclear envelope formation in vitro: a sea urchin egg cell-free system.

Cell Biophysics Laboratory, Cancer Research UK (CR-UK), London Research Institute (LRI), London, UK.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 02/2009; 464:207-23. DOI: 10.1007/978-1-60327-461-6_12
Source: PubMed

ABSTRACT The formation of the nuclear envelope (NE) typically occurs once during every mitotic cycle in somatic cells, and also around the sperm nucleus following fertilization. Much of our understanding of NE assembly has been derived from systems modeling the latter event in vitro. In these systems, demembranated sperm nuclei are combined with fertilized egg cytoplasmic extracts and an ATP-regenerating system and in a multistep process they form the functional double bilayer of the NE. Using a system that we developed from sea urchin gametes, we have demonstrated that NE assembly is regulated by membrane vesicles in a spatial and temporal fashion, emphasizing the roles of phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), diacylglycerols (DAG), and lipid-modifying enzymes in NE assembly.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCgamma), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P(2)) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism.
    PLoS ONE 01/2010; 5(8):e12208. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review article deals with phospholipases C (PLC), sphingomyelinases (SMases) and related lipases. Bacterial PC-preferring PLC and PI-specific PLC, bacterial SMases and PLC/SMases, eukaryotic SMases and ceramide phosphorylinositol hydrolases are discussed. The aim of the review is to offer a coherent description of lipid-protein interactions for the above enzymes, considering that (a) the enzyme activity is influenced by the physical properties of the substrate lipid, (b) the enzyme activity is modulated by non-substrate lipids, (c) enzyme end-products often change the physical properties of the lipid matrix, hence the enzyme activity. This approach allows a certain degree of understanding of phenomena such as: latency periods (lag times), enzyme interfacial activation, effects of intrinsic lipid curvature and of overall bilayer curvature on enzyme activity, and enzyme-promoted vesicle aggregation and fusion.
    Progress in lipid research 04/2012; 51(3):238-66. · 10.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear envelope (NE) breaks down and reforms during each mitotic cycle. A similar process happens to the sperm NE following fertilisation. The formation of the NE in both these circumstances involves endoplasmic reticulum membranes enveloping the chromatin, but PLCγ-dependent membrane fusion events are also essential. Here we demonstrate the activation of PLCγ by a Src family kinase (SFK1) during NE assembly. We show by time-resolved FRET for the first time the direct in vivo interaction and temporal regulation of PLCγ and SFK1 in sea urchins. As a prerequisite for protein activation, there is a rapid phosphorylation of PLCγ on its Y783 residue in response to GTP in vitro. This phosphorylation is dependent upon SFK activity; thus Y783 phosphorylation and NE assembly are susceptible to SFK inhibition. Y783 phosphorylation is also observed on the surface of the male pronucleus (MPN) in vivo during NE formation. Together the corroborative in vivo and in vitro data demonstrate the phosphorylation and activation of PLCγ by SFK1 during NE assembly. We discuss the potential generality of such a mechanism.
    PLoS ONE 01/2012; 7(7):e40669. · 3.53 Impact Factor


Available from
Jun 1, 2014