Inflammatory Cytokines at the Summits of Pathological Signal Cascades in Brain Diseases

Departments of Pediatrics and Neurology and Neurological Sciences, Stanford University, Beckman Center for Molecular Medicine, Stanford, CA 94305-5316, USA.
Science Signaling (Impact Factor: 7.65). 01/2013; 6(258):pe3. DOI: 10.1126/scisignal.2003898
Source: PubMed

ABSTRACT When considering the hierarchical organization of pathological signaling cascades in immunological disorders of the brain, certain cytokines might be considered pinnacles of pathophysiological importance, with their presence determining the appearance or the course of a particular disease. Interleukin-1 (IL-1), IL-6, IL-17, and tumor necrosis factor are critical for the pathogenesis of inflammation in specific brain disorders. Targeting these cytokines or their receptors can alter the course of several neurological diseases, but the effects may be beneficial or harmful.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
    Neuropsychiatric Disease and Treatment 01/2015; 11:243-56. DOI:10.2147/NDT.S75546 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes.
    Biomaterials 03/2015; 44. DOI:10.1016/j.biomaterials.2014.12.009 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracortical electrodes record neural signals directly from local populations of neurons in the brain, and conduct them to external electronics that control prosthetics. However, the relationship between electrode design, defined by shape, size and tethering; and long-term (chronic) stability of the neuron-electrode interface is poorly understood. Here, we studied the effects of various commercially available intracortical electrode designs that vary in shape (cylindrical, planar), size (15 μm, 50 μm and 75 μm), and tethering [electrode connections to connector with (tethered) and without tethering cable (untethered)] using histological, transcriptomic, and electrophysiological analyses over acute (3 day) and chronic (12 week) timepoints. Quantitative analysis of histological sections indicated that Michigan 50 μm (M50) and Michigan tethered (MT) electrodes induced significantly (p < 0.01) higher glial scarring, and lesser survival of neurons in regions of blood-brain barrier (BBB) breach when compared to microwire (MW) and Michigan 15 μm (M15) electrodes acutely and chronically. Gene expression analysis of the neurotoxic cytokines interleukin (Il)1 (Il1α, Il1β), Il6, Il17 (Il17a, Il17b, Il17f), and tumor necrosis factor alpha (Tnf) indicated that MW electrodes induced significantly (p < 0.05) reduced expression of these transcripts when compared to M15, M50 and FMAA electrodes chronically. Finally, electrophysiological assessment of electrode function indicated that MW electrodes performed significantly (p < 0.05) better than all other electrodes over a period of 12 weeks. These studies reveal that intracortical electrodes with smaller size, cylindrical shape, and without tethering cables produce significantly diminished inflammatory responses when compared to large, planar and tethered electrodes. These studies provide a platform for the rational design and assessment of chronically functional intracortical electrode implants in the future.
    Biomaterials 07/2013; 34(33). DOI:10.1016/j.biomaterials.2013.07.016 · 8.31 Impact Factor