Article

Architecture and Assembly of HIV Integrase Multimers in the Absence of DNA Substrates.

Fox Chase Cancer Center, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2013; DOI: 10.1074/jbc.M112.434431
Source: PubMed

ABSTRACT have applied small angle X-ray scattering (SAXS) and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain (NTD) intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the NTD of one monomer with the C-terminal domain (CTD) and catalytic core domain of the second monomer, as well as direct interactions between the two CTDs. This organization is similar to the "reaching dimer" previously described for wild type ASV apo-IN, and resembles the inner, substrate-binding dimer in the crystal structure of the PFV intasome. Results from our SAXS and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition.

0 Followers
 · 
109 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
    12/2014; 2(5):MDNA300052014. DOI:10.1128/microbiolspec.MDNA3-0005-2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the importance of human immunodeficiency virus type 1 (HIV-1) integrase as a drug target, the biochemistry and structural aspects of retroviral DNA integration have been the focus of intensive research during the past three decades. The retroviral integrase enzyme acts on the linear double-stranded viral DNA product of reverse transcription. Integrase cleaves specific phosphodiester bonds near the viral DNA ends during the 3' processing reaction. The enzyme then uses the resulting viral DNA 3'-OH groups during strand transfer to cut chromosomal target DNA, which simultaneously joins both viral DNA ends to target DNA 5'-phosphates. Both reactions proceed via direct transesterification of scissile phosphodiester bonds by attacking nucleophiles: a water molecule for 3' processing, and the viral DNA 3'-OH for strand transfer. X-ray crystal structures of prototype foamy virus integrase-DNA complexes revealed the architectures of the key nucleoprotein complexes that form sequentially during the integration process and explained the roles of active site metal ions in catalysis. X-ray crystallography furthermore elucidated the mechanism of action of HIV-1 integrase strand transfer inhibitors, which are currently used to treat AIDS patients, and provided valuable insights into the mechanisms of viral drug resistance.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C-terminal domain (CTD) of HIV-1 integrase is a five stranded β-barrel resembling an SH3 fold. Mutational studies on isolated CTD and full-length IN have reported V260E mutant as either homo-dimerization defective or affecting the stability and folding of CTD. In this study, molecular dynamics simulation techniques were used to unveil the effect of V260E mutation on isolated CTD monomer and dimer. Both monomeric and dimeric forms of wild type and V260E mutant are highly stable during the simulated period. However, the stabilizing π-stacking interaction between Trp243 and Trp243' at the dimer interface is highly disturbed in CTD-V260E (>6 Å apart). The loss in entropy for dimerization is -30 and -25 kcal/mol for CTD-wt and CTD-V260E respectively signifying a weak hydrophobic interaction and its perturbation in CTD-V260E. The mutant Glu260 exhibits strong attraction/repulsion with all the basic/acidic residues of CTD. In addition to this, the dynamics of CTD-wild type and V260E monomers at 498 K was analyzed to elucidate the effect of V260E mutation on CTD folding. Increase in SASA and reduction in the number of contacts in CTD-V260E during simulation highlights the instability caused by the mutation. In general, V260E mutation affects both multimerization and protein folding with a pronounced effect on protein folding rather than multimerization. This study emphasizes the importance of the hydrophobic nature and SH3 fold of CTD in proper functioning of HIV integrase and perturbing this nature would be a rational approach toward designing more selective and potent allosteric anti-HIV inhibitors.
    Journal of Computer-Aided Molecular Design 01/2015; 29(4). DOI:10.1007/s10822-015-9830-y · 2.78 Impact Factor